scholarly journals Thermal Stability of Nanosilica-Modified Poly(Vinyl Chloride)

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2057
Author(s):  
Jolanta Tomaszewska ◽  
Tomasz Sterzyński ◽  
Damian Walczak

The thermal stability of PVC with 1 wt % of spherical porous nanosilica, prepared by roll milling at processing time varied from 1 to 20 min, was investigated by means of visual color changes, Congo red, and thermogravimetric tests (TGA and DTG), as a function of rolling time and composition of PVC matrix. The melt flow rate (MFR) measurements were realized to identify the degradation-induced changes of processing properties. A high level of gelation of the PVC matrix for all samples was verified by DSC (differential scanning calorimetry). It was found that the addition of porous nanosilica to absorb a certain volume of HCl, produced by dehydrochlorination reaction, leads to an improvement of thermal stability, an effect observed in a form of minor color changes of the samples, lower evolution of gas hydrogen chloride, and slight changes of the MFR value. It was demonstrated that the TGA measurements are not sufficiently sensible to detect the degradation of PVC at the processing conditions, i.e., at the temperature equal to 220 °C and below this temperature.

2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2872
Author(s):  
Seyed Mohamad Reza Paran ◽  
Ghasem Naderi ◽  
Elnaz Movahedifar ◽  
Maryam Jouyandeh ◽  
Krzysztof Formela ◽  
...  

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.


1999 ◽  
Vol 580 ◽  
Author(s):  
G.D. Hibbard ◽  
U. Erb ◽  
K.T. Aust ◽  
G. Palumbo

AbstractIn this study, the effect of grain size distribution on the thermal stability of electrodeposited nanocrystalline nickel was investigated by pre-annealing material such that a limited amount of abnormal grain growth was introduced. This work was done in an effort to understand the previously reported, unexpected effect, of increasing thermal stability with decreasing grain size seen in some nanocrystalline systems. Pre-annealing produced a range of grain size distributions in materials with relatively unchanged crystallographic texture and total solute content. Subsequent thermal analysis of the pre-annealed samples by differential scanning calorimetry showed that the activation energy of further grain growth was unchanged from the as-deposited nanocrystalline nickel.


2021 ◽  
Vol 900 (1) ◽  
pp. 012042
Author(s):  
N Stevulova ◽  
A Estokova

Abstract This paper is addressed to comparative study of changes in thermal stability of surface-modified hemp-hurds aggregates long-term incorporated in bio-aggregate-based composites with the original ones before their integration into alternative binder matrix. In this study, the effectiveness of alkaline treatment of hemp hurds compared to the raw bio-aggregates as well as in relation to their behaviour when they are long-term incorporated in the MgO-cement environment is investigated. The differences in the thermal behaviour of the samples are explained by the changed structure of hemp hurds constituents due to the pre-treatment and long-term action of the alternative binder components on the bio-aggregates. Alkaline treatment increases thermal stability of hemp hurds compared to raw sample. Also long-term incorporation of hemp hurds in MgO-cement matrix had a similar effect in case of alkaline modified bio-aggregates. The more alkali ions present in the structure of hemp hurdssamples, the more ash is formed during their thermal decomposition studied by thermal gravimetry (TG) and differential scanning calorimetry (DSC).


2018 ◽  
Vol 39 (4) ◽  
pp. 21
Author(s):  
Gilbert Bannach ◽  
Rafael R. Almeida ◽  
Luis G. Lacerda ◽  
Egon Schnitzler ◽  
Massao Ionashiro

Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.


2012 ◽  
Vol 727-728 ◽  
pp. 1552-1556
Author(s):  
Renata Barbosa ◽  
Dayanne Diniz Souza ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

Studies of degradation have verified that the decomposition of some quaternary ammonium salts can begin to be significant at the temperature of about 180 ° C and like most thermoplastics are processed at least around this temperature, the thermal stability of the salt in clay should always be considered. Some salts are more stable than others, being necessary to study the degradation mechanisms of each case. In this work, four quaternary ammonium salts were characterized by differential scanning calorimetry (DSC) and thermogravimetry (TG). The results of DSC and TG showed that the salts based chloride (Cl-) anion begin to degrade at similar temperatures, while the salt based bromide (Br-) anion degrades at higher temperature. Subsequently, a quaternary ammonium salt was chosen to be used in organoclays, depending on its chemical structure and its thermal behavior.


Sign in / Sign up

Export Citation Format

Share Document