scholarly journals Colorimetric Sensing of Amoxicillin Facilitated by Molecularly Imprinted Polymers

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2221
Author(s):  
Joseph W Lowdon ◽  
Hanne Diliën ◽  
Bart van Grinsven ◽  
Kasper Eersels ◽  
Thomas J. Cleij

The scope of the presented research orientates itself towards the development of a Molecularly Imprinted Polymer (MIP)-based dye displacement assay for the colorimetric detection of the antibiotic amoxicillin in aqueous medium. With this in mind, the initial development of an MIP capable of such a task sets focus on monolithic bulk polymerization to assess monomer/crosslinker combinations that have potential towards the binding of amoxicillin. The best performing composition (based on specificity and binding capacity) is utilized in the synthesis of MIP particles by emulsion polymerization, yielding particles that prove to be more homogenous in size and morphology compared to that of the crushed monolithic MIP, which is an essential trait when it comes to the accuracy of the resulting assay. The specificity and selectivity of the emulsion MIP proceeds to be highlighted, demonstrating a higher affinity towards amoxicillin compared to other compounds of the aminopenicillin class (ampicillin and cloxacillin). Conversion of the polymeric receptor is then undertaken, identifying a suitable dye for the displacement assay by means of binding experiments with malachite green, crystal violet, and mordant orange. Once identified, the optimal dye is then loaded onto the synthetic receptor, and the displaceability of the dye deduced by means of a dose response experiment. Alongside the sensitivity, the selectivity of the assay is scrutinized against cloxacillin and ampicillin. Yielding a dye displacement assay that can be used (semi-)quantitatively in a rapid manner.

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
S. Mamman ◽  
F. B. M. Suah ◽  
M. Raaov ◽  
F. S. Mehamod ◽  
S. Asman ◽  
...  

In this study, a unique magnetic molecularly imprinted polymer (MMIP) adsorbent towards bisphenol A (BPA) as a template molecule was developed by bulk polymerization using β-cyclodextrin (β-CD) as a co-monomer with methacrylic acid (MAA) to form MMIP MAA–βCD as a new adsorbent. β-CD was hybridized with MAA to obtain water-compactible imprinting sites for the effective removal of BPA from aqueous samples. Benzoyl peroxide and trimethylolpropane trimethacrylate were used as the initiator and cross-linker, respectively. The adsorbents were characterized by Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller and X-ray diffraction. 1 H nuclear magnetic resonance spectroscopy was used to characterize the MAA–βCD and BPA–MAA–βCD complex. Several parameters influencing the adsorption efficiency of BPA such as adsorbent dosage, pH of sample solution, contact time, initial concentrations and temperature as well as selectivity and reusability study have been evaluated. MMIP MAA–βCD showed significantly higher removal efficiency and selective binding capacity towards BPA compared to MMIP MAA owing to its unique morphology with the presence of β-CD. The kinetics data can be well described by the pseudo second-order kinetic and Freundlich isotherm and Halsey models best fitted the isotherm data. The thermodynamic studies indicated that the adsorption reaction was a spontaneous and exothermic process. Therefore, MMIP based on the hybrid monomer of MAA–βCD shows good potential of a new monomer in molecularly imprinted polymer preparation and can be used as an effective adsorbent for the removal of BPA from aqueous solutions.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5222
Author(s):  
Joseph W. Lowdon ◽  
Kasper Eersels ◽  
Rocio Arreguin-Campos ◽  
Manlio Caldara ◽  
Benjamin Heidt ◽  
...  

The rapid sensing of drug compounds has traditionally relied on antibodies, enzymes and electrochemical reactions. These technologies can frequently produce false positives/negatives and require specific conditions to operate. Akin to antibodies, molecularly imprinted polymers (MIPs) are a more robust synthetic alternative with the ability to bind a target molecule with an affinity comparable to that of its natural counterparts. With this in mind, the research presented in this article introduces a facile MIP-based dye displacement assay for the detection of (±) amphetamine in urine. The selective nature of MIPs coupled with a displaceable dye enables the resulting low-cost assay to rapidly produce a clear visual confirmation of a target’s presence, offering huge commercial potential. The following manuscript characterizes the proposed assay, drawing attention to various facets of the sensor design and optimization. To this end, synthesis of a MIP tailored towards amphetamine is described, scrutinizing the composition and selectivity (ibuprofen, naproxen, 2-methoxphenidine, quetiapine) of the reported synthetic receptor. Dye selection for the development of the displacement assay follows, proceeded by optimization of the displacement process by investigating the time taken and the amount of MIP powder required for optimum displacement. An optimized dose–response curve is then presented, introducing (±) amphetamine hydrochloride (0.01–1 mg mL−1) to the engineered sensor and determining the limit of detection (LoD). The research culminates in the assay being used for the analysis of spiked urine samples (amphetamine, ibuprofen, naproxen, 2-methoxphenidine, quetiapine, bupropion, pheniramine, bromopheniramine) and evaluating its potential as a low-cost, rapid and selective method of analysis.


2012 ◽  
Vol 463-464 ◽  
pp. 1473-1478
Author(s):  
Rong Xie ◽  
Wen Jun Gui ◽  
Guo Nian Zhu

A novel nanosized molecularly imprinted polymer spheres for atrazine was synthesized in present assay, as an alternative to the biological antibodies. Both precipitation polymerization and bulk polymerization were performed. Various combinations of template, functional monomer, and cross-linking monomer and porogenic diluents were carried out to optimize the best one. The nanosized MIPs exhibit larger surface area and better binding capacity than traditional polymers, the best binding capacity and imprinted factor for atrazine were 95.75% and 1.83 respectively.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Pattarawarapan Mookda ◽  
Komkham Singha ◽  
Kareuhanon Weeranuch ◽  
Tayapiwatana Chatchai

AbstractTo obtain molecularly imprinted polymers capable of selective rebinding with nicotinamide (NAM), NAM imprinted polymers were synthesized via bulk polymerization using various functional monomers and cross-linkers. The NAM recognition properties of these polymers were investigated in organic and aqueous solvents by equilibrium rebinding experiments. The results show that the imprinted polymer prepared using 1:4:4 molar ratio of NAM/MAA/TRIM in dichloromethane exhibited the greatest NAM binding capacity and selectivity. This polymer is potentially valuable for the analysis of NAM in complex matrices where selective isolation and identification are needed.


2013 ◽  
Vol 12 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Katarína Hroboňová ◽  
Jozef Lehotay ◽  
Jozef Čižmárik

Abstract The group selective molecularly imprinted polymers (MIPs) for coumarins, including umbelliferone, herniarin, 4-methylumbelliferone, scoparone were developed. Using umbelliferone as the template molecule, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as linking agent, chloroform as porogen and bulk polymerization as synthetic method, the MIPs were synthesized and characterized with rebinding experiments. The characteristics of MIPs were evaluated by chromatographic method and frontal analysis, and demonstrating good selectivity and high binding capacity (269 μg of umbelliferone per 100 mg of polymer). The group selective MIP was used as sorbent for the SPE pretreatment of coumarins from propolis extracts prior to HPLC analysis. Analysis of the samples showed good recoveries (>70 %). The limits of quantitation (LOQs) for studied compounds were 0.3-10 ng.mL-1 (determined for fluorescence detection).


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 204
Author(s):  
Yanyan Cheng ◽  
Ling Liang ◽  
Fanggui Ye ◽  
Shulin Zhao

Metal–organic framework (MOF) nanozymes, as emerging members of the nanozymes, have received more and more attention due to their composition and structural characteristics. In this work, we report that mixed-valence state Ce-MOF (MVCM) has intrinsic haloperoxidase-mimicking activity. MVCM was synthesized by partial oxidation method using Ce-MOF as a precursor. In the presence of H2O2 and Br−, MVCM can catalyze oxidative bromination of chromogenic substrate phenol red (PR) to produce the blue product bromophenol blue (Br4PR), showing good haloperoxidase-like activity. Because of the special chromogenic substrate, we constructed a ratiometric colorimetric-sensing platform by detecting the absorbance of the MVCM-(PR, Br−) system at wavelengths of 590 and 430, for quantifying H2O2, where the detection limit of the H2O2 is 3.25 μM. In addition, the haloperoxidase-mimicking mechanism of the MVCM is proposed. Moreover, through enzyme kinetics monitoring, the Km (H2O2 and NH4Br) of the MVCM is lower than that of cerium oxide nanomaterials, indicating that the MVCM has a stronger binding affinity for H2O2 and NH4Br than other materials. This work provides more application prospects for the development of nanozymes in the field of biosensors in the future.


2009 ◽  
Vol 87-88 ◽  
pp. 80-85
Author(s):  
Jin Yang Yu ◽  
Xiao Ling Hu ◽  
Cui Cui Jiao ◽  
Ya Mei Zhao ◽  
Wei Wei Yang

Molecularly imprinted composite membranes for selective binding and permeation of roxithromycin were prepared by means of thermal initiated co-polymerization method using polysulfone ultra-filtration membranes as porous supports. Scanning electron microscope was utilized to visualize surface and cross-sections of the membranes to gain more better understanding in the analysis of imprinted layers deposited on PSF support membranes and differential scanning calorimetric was used for determining the thermal stability of the membranes. Static equilibrium binding and recognition properties of the imprinted and non-imprinted membranes to roxithromycin and its analogues in ethanol solution system were tested. The results showed that saturated binding capacity of imprinted membrane to roxithromycin was about 2.24μmol/g, higher than those of its analogues, and the selectivity factors of αRM/EM, αRM/AM and αRM/EE were 1.75, 2.46 and 2.67, respectively. The transport performances of the membranes were evaluated through kinetic filtration experiments. The separation mechanism of the roxithromycin imprinted membrane could be defined as facilitated permeation mechanism.


2012 ◽  
Vol 743 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Feng ◽  
Hui Li ◽  
Xiao Li ◽  
Liang Chen ◽  
Zheng Shen ◽  
...  

The Analyst ◽  
2019 ◽  
Vol 144 (4) ◽  
pp. 1205-1209 ◽  
Author(s):  
Chi Zhang ◽  
Caiyun Kong ◽  
Qingyun Liu ◽  
Zhengbo Chen

We herein present a simple, low-cost, and ultrasensitive colorimetric sensing strategy for the detection of mercury ions (Hg2+) that takes advantage of the natural pore structure in rose petals to encapsulate gold nanoparticles (AuNPs).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaotian Zhu ◽  
Chang Liu ◽  
Jie Liu

A new colorimetric assay for the detection of sulfide anions with high sensitivity and selectivity is reported, utilizing Au-Hg alloy nanorods (Au-HgNRs) as probe. Au-HgNRs were prepared by modifying gold nanorods (AuNRs) with reducing agent and mercury ions. In an aqueous solution with sulfide anions, the formation of mercuric sulfide due to redox reaction between the amalgams and sulfide anions greatly changed the surface chemistry and morphology of the Au-HgNRs, leading to a red shift of the localized surface plasmon resonance (LSPR) absorption peak, accompanied by a change in colorimetric response. A good linear relationship was obtained between the LSPR peak wavelength shift and concentration of sulfide anion in the range of 1 × 10−5−1 × 10−4 mol/L. The selectivity of this method has been investigated by other anions. The colorimetric sensing system successfully detected sulfide in wastewater from leather industry.


Sign in / Sign up

Export Citation Format

Share Document