scholarly journals Environmentally Friendly Synthesis of Poly(3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate)/SnO2 Nanocomposites

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2445
Author(s):  
Ana M. Díez-Pascual

Conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is widely used for practical applications such as energy conversion and storage devices owing to its good flexibility, processability, high electrical conductivity, and superior optical transparency, among others. However, its hygroscopic character, short durability, and poor thermoelectric performance compared to inorganic counterparts has greatly limited its high-tech applications. In this work, PEDOT:PSS/SnO2 nanocomposites have been prepared via a simple, low cost, environmentally friendly method without the use of organic solvents or compatibilizing agents. Their morphology, thermal, thermoelectrical, optical, and mechanical properties have been characterized. Electron microscopy analysis revealed a uniform dispersion of the SnO2 nanoparticles, and the Raman spectra revealed the existence of very strong SnO2-PEDOT:PSS interactions. The stiffness and strength of the matrix gradually increased with increasing SnO2 content, up to 120% and 65%, respectively. Moreover, the nanocomposites showed superior thermal stability (as far as 70 °C), improved electrical conductivity (up to 140%), and higher Seebeck coefficient (about 80% increase) than neat PEDOT:PSS. On the other hand, hardly any change in optical transparency was observed. These sustainable nanocomposites show considerably improved performance compared to commercial PEDOT:PSS, and can be highly useful for applications in energy storage, flexible electronics, thermoelectric devices, and related fields.

RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25237-25243 ◽  
Author(s):  
Chanil Park ◽  
Dohyuk Yoo ◽  
Soeun Im ◽  
Soyeon Kim ◽  
Wonseok Cho ◽  
...  

Poly(3,4-ethyldioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), as a thermoelectric(TE) material, exhibits a high electrical conductivity and ZT value (10−1–100).


2020 ◽  
Vol 117 (44) ◽  
pp. 27154-27161
Author(s):  
Sijie Wan ◽  
Xiang Li ◽  
Yanlei Wang ◽  
Ying Chen ◽  
Xi Xie ◽  
...  

Titanium carbide (Ti3C2Tx) MXene has great potential for use in aerospace and flexible electronics due to its excellent electrical conductivity and mechanical properties. However, the assembly of MXene nanosheets into macroscopic high-performance nanocomposites is challenging, limiting MXene’s practical applications. Here we describe our work fabricating strong and highly conductive MXene sheets through sequential bridging of hydrogen and ionic bonding. The ionic bonding agent decreases interplanar spacing and increases MXene nanosheet alignment, while the hydrogen bonding agent increases interplanar spacing and decreases MXene nanosheet alignment. Successive application of hydrogen and ionic bonding agents optimizes toughness, tensile strength, oxidation resistance in a humid environment, and resistance to sonication disintegration and mechanical abuse. The tensile strength of these MXene sheets reaches up to 436 MPa. The electrical conductivity and weight-normalized shielding efficiency are also as high as 2,988 S/cm and 58,929 dB∙cm2/g, respectively. The toughening and strengthening mechanisms are revealed by molecular-dynamics simulations. Our sequential bridging strategy opens an avenue for the assembly of other high-performance MXene nanocomposites.


2013 ◽  
Vol 117 (37) ◽  
pp. 10929-10935 ◽  
Author(s):  
A. Jolt Oostra ◽  
Karel H. W. van den Bos ◽  
Paul W. M. Blom ◽  
Jasper J. Michels

2020 ◽  
pp. 004051752097563
Author(s):  
Hyeon-seon Cho ◽  
Eunji Jang ◽  
Hang Liu ◽  
Gilsoo Cho

Smart clothing, which can be manufactured based on smart textiles with electrical conductivity, can be used as a transmission line to transmit signals. The performance of the fabricated textile-based transmission line can be determined by evaluating light-emitting diode consistency. In this study, a textile-based transmission line was fabricated by impregnating two concentrations of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) to impart the electrical conductivity to a polyurethane (PU) nanoweb. Three conditions of thermal treatment were conducted to decrease the electrical resistance, and the thickness, electrical, surface, and chemical properties were evaluated. The thickness of the specimens tended to decrease at the low concentration, and the thermal treatment temperature increased. The linear resistances decreased from 1580 Ω/cm (PA) to 310.6 Ω/cm (PB120) as the concentration of PEDOT: PSS and thermal treatment temperature increased. Field emission scanning electron microscope images show that the PU nanoweb was uniformly and successfully impregnated with PEDOT: PSS. Raman spectra indicate an effect of the thermal treatment on the structural change of the PEDOT chains, which suggests an electrical resistance change of specimens. As a result, the optimum concentration of the PEDOT: PSS impregnated PU nanoweb as a transmission line for smart textiles is 2.6 wt%, and the thermal treatment temperature is 120℃. The performance of the textile-based transmission line (PB120) according to the length was higher as the length of the specimen was shorter. The highest consistency was 51 lm/m2 (50 mm), and the lowest was 45 lm/m2 (150 mm). Therefore, the PEDOT: PSS/PU nanoweb has applicability and feasibility as a transmission line.


2021 ◽  
Author(s):  
Jie Liang ◽  
Hongwei Sheng ◽  
Qi Wang ◽  
Jiao Yuan ◽  
Xuetao Zhang ◽  
...  

Flexible transparent supercapacitors (FTSC) are essential for the development of next-generation transparent electronics, however, a significant challenge is to achieve high-areal-capacitance FTSCs without sacrificing optical transparency. Herein, poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate)...


2021 ◽  
pp. 152808372098654
Author(s):  
Linghui Peng ◽  
Lingling Shen ◽  
Weiren Fan ◽  
Zichuan Liu ◽  
Hongbo Qiu ◽  
...  

Due to the effects of climate changing, the importance of outdoor thermal comfort has been recognized, and has gained more and more research attentions. Unlike indoor space where air conditioning can be easily implemented, outdoor thermal comfort can only be achieved by localized thermal management. Using textile is a simple but energy-saving way to realize outdoor thermal comfort. Herein, we report the design of a smart thermal management film with the silver/vanadium dioxide/silver (Ag/VO2/Ag) sandwich structure prepared by one-dimensional (1 D) nanowires. It was found that the Ag/VO2/Ag sandwich film was able to lower the temperature by around 10 °C under intense infrared (IR) radiation. In addition, the Ag/VO2/Ag sandwich structure film showed a thermo-responsive electrical conductivity and an outstanding bending stability, due to network structure formed by nanowires. It was experimentally proved that this sandwich structure was superior to other layer structures in IR shielding performance and thermo-responsive electrical conductivity. The as-prepared Ag/VO2/Ag sandwich structure film has great potential for various applications such as wearable devices, flexible electronics, medical monitors and smart IR radiation management.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1975
Author(s):  
Hyeok Jo Jeong ◽  
Hong Jang ◽  
Taemin Kim ◽  
Taeshik Earmme ◽  
Felix Sunjoo Kim

We investigate the sigmoidal concentration dependence of electrical conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) processed with linear glycol-based additives such as ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), hexaethylene glycol (HEG), and ethylene glycol monomethyl ether (EGME). We observe that a sharp transition of conductivity occurs at the additive concentration of ~0.6 wt.%. EG, DEG, and TEG are effective in conductivity enhancement, showing the saturation conductivities of 271.8, 325.4, and 326.2 S/cm, respectively. Optical transmittance and photoelectron spectroscopic features are rather invariant when the glycols are used as an additive. Two different figures of merit, calculated from both sheet resistance and optical transmittance to describe the performance of the transparent electrodes, indicate that both DEG and TEG are two most effective additives among the series in fabrication of transparent electrodes based on PEDOT:PSS films with a thickness of ~50–60 nm.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1875
Author(s):  
Alexander Yu. Gerasimenko ◽  
Artem V. Kuksin ◽  
Yury P. Shaman ◽  
Evgeny P. Kitsyuk ◽  
Yulia O. Fedorova ◽  
...  

A technology for the formation of electrically conductive nanostructures from single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and their hybrids with reduced graphene oxide (rGO) on Si substrate has been developed. Under the action of single pulses of laser irradiation, nanowelding of SWCNT and MWCNT nanotubes with graphene sheets was obtained. Dependences of electromagnetic wave absorption by films of short and long nanotubes with subnanometer and nanometer diameters on wavelength are calculated. It was determined from dependences that absorption maxima of various types of nanotubes are in the wavelength region of about 266 nm. It was found that contact between nanotube and graphene was formed in time up to 400 fs. Formation of networks of SWCNT/MWCNT and their hybrids with rGO at threshold energy densities of 0.3/0.5 J/cm2 is shown. With an increase in energy density above the threshold value, formation of amorphous carbon nanoinclusions on the surface of nanotubes was demonstrated. For all films, except the MWCNT film, an increase in defectiveness after laser irradiation was obtained, which is associated with appearance of C–C bonds with neighboring nanotubes or graphene sheets. CNTs played the role of bridges connecting graphene sheets. Laser-synthesized hybrid nanostructures demonstrated the highest hardness compared to pure nanotubes. Maximum hardness (52.7 GPa) was obtained for MWCNT/rGO topology. Regularity of an increase in electrical conductivity of nanostructures after laser irradiation has been established for films made of all nanomaterials. Hybrid structures of nanotubes and graphene sheets have the highest electrical conductivity compared to networks of pure nanotubes. Maximum electrical conductivity was obtained for MWCNT/rGO hybrid structure (~22.6 kS/m). Networks of nanotubes and CNT/rGO hybrids can be used to form strong electrically conductive interconnections in nanoelectronics, as well as to create components for flexible electronics and bioelectronics, including intelligent wearable devices (IWDs).


Sign in / Sign up

Export Citation Format

Share Document