scholarly journals Semi-Fluorinated Di and Triblock Copolymer Nano-Objects Prepared via RAFT Alcoholic Dispersion Polymerization (PISA)

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2502
Author(s):  
Gregoire Desnos ◽  
Adrien Rubio ◽  
Chaimaa Gomri ◽  
Mathias Gravelle ◽  
Vincent Ladmiral ◽  
...  

A set of well-defined amphiphilic, semi-fluorinated di and triblock copolymers were synthesized via polymerization-induced self-assembly (PISA) under alcoholic dispersion polymerization conditions. This study investigates the influence of the length, nature and position of the solvophobic semi-fluorinated block. A poly(N,N-dimethylaminoethyl methacrylate) was used as the stabilizing block to prepare the di and tri block copolymer nano-objects via reversible addition-fragmentation chain transfer (RAFT) controlled dispersion polymerization at 70 °C in ethanol. Benzylmethacrylate (BzMA) and semi-fluorinated methacrylates and acrylates with 7 (heptafluorobutyl methacrylate (HFBMA)), 13 (heneicosafluorododecyl methacrylate (HCFDDMA)) and 21 (tridecafluorooctyl acrylate (TDFOA)) fluorine atoms were used as monomers for the core-forming blocks. The RAFT polymerization of these semi-fluorinated monomers was monitored by SEC and 1H NMR. The evolution of the self-assembled morphologies was investigated by transmission electron microscopy (TEM). The results demonstrate that the order of the blocks and the number of fluorine atoms influence the microphase segregation of the core-forming blocks and the final morphology of the nano-objects.

2019 ◽  
Vol 10 (19) ◽  
pp. 2424-2435 ◽  
Author(s):  
Bingjie Zhao ◽  
Sen Xu ◽  
Sixun Zheng

A novel organic–inorganic ABA triblock copolymer with a poly(acrylate amide) (PAA) midblock and poly(POSS acrylate) [P(POSS)] endblocks was synthesized via sequential reversible addition–fragmentation chain transfer (RAFT) polymerization.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 601 ◽  
Author(s):  
Tatyana Elkin ◽  
Stacy Copp ◽  
Ryan Hamblin ◽  
Jennifer Martinez ◽  
Gabriel Montaño ◽  
...  

Polystyrene-b-polyethylene glycol (PS-b-PEG) amphiphilic block copolymers featuring a terminal tridentate N,N,N-ligand (terpyridine) were synthesized for the first time through an efficient route. In this approach, telechelic chain-end modified polystyrenes were produced via reversible addition-fragmentation chain-transfer (RAFT) polymerization by using terpyridine trithiocarbonate as the chain-transfer agent, after which the hydrophilic polyethylene glycol (PEG) block was incorporated into the hydrophobic polystyrene (PS) block in high yields via a thiol-ene process. Following metal-coordination with Mn2+, Fe2+, Ni2+, and Zn2+, the resulting metallo-polymers were self-assembled into spherical, vesicular nanostructures, as characterized by dynamic light scattering and transmission electron microscopy (TEM) imaging.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Linping Zheng ◽  
Yun Chai ◽  
Yang Liu ◽  
Puyu Zhang

AbstractThe block copolymer of polystyrene-block-polyacrylate-blockpolystyrene (PSt-PAA-PSt) has been synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization using S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)-trithiocarbonate (BDATC) as chain transfer agent. Three copolymers form micelles in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). The nanostructures of the PSt-PAA-PSt micelles formed in ionic liquid were observed by transmission electron microscopy (TEM). The self-assembled morphologies of the micelles are strongly dependent on the length of PAA block chains when the chain length of PS is fixed. The affinity of PAA chains for water and [BMIM][PF6] reverses with increasing temperature. Research results show that the copolymer with low polydispersity can be obtained by controlling polymerization, and the flexibility of amphiphilic block copolymers for controlling nanostructure in an ionic liquid presents potential applications in many arenas.


2017 ◽  
Vol 1 (6) ◽  
pp. 1200-1206 ◽  
Author(s):  
Jiemei Zhou ◽  
Chunyan Hong ◽  
Caiyuan Pan

A visible light mediated reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) is conducted in ethanol using poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) as a macro-chain transfer agent (macro-CTA), affording polymeric nanomaterials with various morphologies.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 352 ◽  
Author(s):  
Isadora Berlanga

Giant vesicles with several-micrometer diameters were prepared by the self-assembly of an amphiphilic block copolymer in the presence of the Belousov–Zhabotinsky (BZ) reaction. The vesicle is composed of a non-uniform triblock copolymer synthesized by multi-step reactions in the presence of air at room temperature. The triblock copolymer contains poly(glycerol monomethacrylate) (PGMA) as the hydrophilic block copolymerized with tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)3), which catalyzes the BZ reaction, and 2-hydroxypropyl methacrylate (HPMA) as the hydrophobic block. In this new approach, the radicals generated in the BZ reaction can activate a reversible addition-fragmentation chain transfer (RAFT) polymerization to self-assemble the polymer into vesicles with diameters of approximately 3 µm. X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the PGMA-b-Ru(bpy)3-b-PHPMA triblock copolymer is brominated and increases the osmotic pressure inside the vesicle, leading to micrometer-sized features. The effect of solvent on the morphological transitions are also discussed briefly. This BZ strategy, offers a new perspective to prepare giant vesicles as a platform for promising applications in the areas of microencapsulation and catalyst support, due to their significant sizes and large microcavities.


2011 ◽  
Vol 284-286 ◽  
pp. 769-772
Author(s):  
Qian Qian You ◽  
Pu Yu Zhang

The block copolymer of PSt-b-POEOMA with the end of -COOH functional group has been synthesized by reversible addition fragmentation chain-transfer (RAFT) using S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)-trithiocarbonate (BDATC) as a chain transfer agent. The architectures of the copolymers were confirmed by FT-IR and 1HNMR spectra. GPC analysis was used to estimate the molecular weight and the molecular weight distribution of the copolymers. Meanwhile, The nanostructures of the block copolymers PSt-b-POEOMA micelles formed in aqueous solution were observed by transmission electron microscopy (TEM) and dynamic light scattering (DLS).


RSC Advances ◽  
2015 ◽  
Vol 5 (119) ◽  
pp. 98559-98565 ◽  
Author(s):  
Muhammad Mumtaz ◽  
Karim Aissou ◽  
Dimitrios Katsigiannopoulos ◽  
Cyril Brochon ◽  
Eric Cloutet ◽  
...  

Controlled polymerization and self-assembly of novel block copolymer electrolytes.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3145 ◽  
Author(s):  
Katharina Nieswandt ◽  
Prokopios Georgopanos ◽  
Clarissa Abetz ◽  
Volkan Filiz ◽  
Volker Abetz

In this work, we present a novel synthetic route to diblock copolymers based on styrene and 3-vinylpyridine monomers. Surfactant-free water-based reversible addition–fragmentation chain transfer (RAFT) emulsion polymerization of styrene in the presence of the macroRAFT agent poly(3-vinylpyridine) (P3VP) is used to synthesize diblock copolymers with molecular weights of around 60 kDa. The proposed mechanism for the poly(3-vinylpyridine)-block-poly(styrene) (P3VP-b-PS) synthesis is the polymerization-induced self-assembly (PISA) which involves the in situ formation of well-defined micellar nanoscale objects consisting of a PS core and a stabilizing P3VP macroRAFT agent corona. The presented approach shows a well-controlled RAFT polymerization, allowing for the synthesis of diblock copolymers with high monomer conversion. The obtained diblock copolymers display microphase-separated structures according to their composition.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1284 ◽  
Author(s):  
Dongdong Liu ◽  
Ruiming Zeng ◽  
Hao Sun ◽  
Li Zhang ◽  
Jianbo Tan

Blue light-initiated alcoholic reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) using bis (acyl) phosphane oxide (BAPO) as the photo-initiator is developed to prepare diblock copolymer nano-objects. High monomer conversion (95%) was achieved within 2 h of blue light irradiation in an isopropanol/water mixture. Effects of solvent, light intensity, and reaction temperature on the polymerization kinetics were evaluated. Finally, the effect of reaction temperature on the morphologies of diblock copolymer nano-objects was investigated and two morphological phase diagrams were constructed at 25 and 70 °C. Transmission electron microscopy (TEM) measurement confirmed that increasing the reaction temperature promoted the evolution of higher order morphology. We believe this study will provide more mechanistic insights into alcoholic RAFT dispersion polymerization for the creation of diblock copolymer nano-objects with well-defined structures.


2021 ◽  
Author(s):  
bingbing zhao ◽  
Yuting Yan ◽  
Junmei Zhang ◽  
Enping Chen ◽  
Ke Wang ◽  
...  

A novel zwitterionic triblock copolymer of poly(dimethylamino carbonate)-polycaprolactone-poly((2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium) [PAC(DMA)-PCL-PMDMSA] was designed and synthesized via sequential ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization successively. The 1H NMR and...


Sign in / Sign up

Export Citation Format

Share Document