scholarly journals Fabrication of Bio-Nanocomposite Based on HNT-Methionine for Controlled Release of Phenytoin

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2576
Author(s):  
Majid Abdouss ◽  
Nastaran Radgoudarzi ◽  
Alireza Mohebali ◽  
Elaheh Kowsari ◽  
Mojtaba Koosha ◽  
...  

In this study, a novel promising approach for the fabrication of Halloysite nanotube (HNT) nanocomposites, based on the amino acid named Methionine (Met), was investigated. For this purpose, Met layered on the outer silane functionalized surface of HNT for controlled release of Phenytoin sodium (PHT). The resulting nanocomposite (MNT-g-Met) was characterized by FTIR, XRD, Zeta potential, TGA, TEM and FE-SEM. The FT-IR results showed APTES and Met peaks, which proved the modification of the HNTs. The zeta-potential results showed the interaction between APTES (+53.30) and Met (+38.80) on the HNTs (−30.92). The FE-SEM micrographs have displayed the grafting of Met on the modified HNTs due to the nanotube conversion to a rough and indistinguishable form. The amount of encapsulation efficiency (EE) and loading efficiency (LE) of MNT-g-Met was 74.48% and 37.24%, while pure HNT was 57.5%, and 28.75%, respectively. In-vitro studies showed that HNT had a burst release (70% in 6 h) in phosphate buffer while MNT-g-Met has more controlled release profile (30.05 in 6 h) and it was found to be fitted with the Korsmeyer-Peppas model. Due to the loading efficiency and controlled release profile, the nanocomposite promote a good potential for drug delivery of PHT.

RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 19060-19068 ◽  
Author(s):  
Elisangela P. da Silva ◽  
Marcos R. Guilherme ◽  
Francielle P. Garcia ◽  
Celso V. Nakamura ◽  
Lucio Cardozo-Filho ◽  
...  

Hydrogel nanocomposites of pectin, HEMA and titania for Vit-B12 controlled release with reduced initial release burst were prepared. A reduction of up to ca. 60% was observed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2100
Author(s):  
Luis Castillo-Henríquez ◽  
Pablo Sanabria-Espinoza ◽  
Brayan Murillo-Castillo ◽  
Gabriela Montes de Oca-Vásquez ◽  
Diego Batista-Menezes ◽  
...  

Chronic and non-healing wounds demand personalized and more effective therapies for treating complications and improving patient compliance. Concerning that, this work aims to develop a suitable chitosan-based thermo-responsive scaffold to provide 24 h controlled release of Dexketoprofen trometamol (DKT). Three formulation prototypes were developed using chitosan (F1), 2:1 chitosan: PVA (F2), and 1:1 chitosan:gelatin (F3). Compatibility tests were done by DSC, TG, and FT-IR. SEM was employed to examine the morphology of the surface and inner layers from the scaffolds. In vitro release studies were performed at 32 °C and 38 °C, and the profiles were later adjusted to different kinetic models for the best formulation. F3 showed the most controlled release of DKT at 32 °C for 24 h (77.75 ± 2.72%) and reduced the burst release in the initial 6 h (40.18 ± 1.00%). The formulation exhibited a lower critical solution temperature (LCST) at 34.96 °C, and due to this phase transition, an increased release was observed at 38 °C (88.52 ± 2.07% at 12 h). The release profile for this formulation fits with Hixson–Crowell and Korsmeyer–Peppas kinetic models at both temperatures. Therefore, the developed scaffold for DKT delivery performs adequate controlled release, thereby; it can potentially overcome adherence issues and complications in wound healing applications.


1970 ◽  
Vol 5 (1) ◽  
pp. 33-37
Author(s):  
Md. Shamsuddin ◽  
Parvin Akter ◽  
Md. Ziaur Rahman Khan ◽  
Jakir Ahmed Chowdhury ◽  
Md. Selim Reza

Controlled release matrix tablets of theophylline anhydrous were designed with different types of bioadhesive polymers. HPMC 15 cps and 50 cps, Na-CMC, Gelatin, Xanthun gum and PVP K-30 were selected to formulate matrix tablets. Tablets of theophylline were prepared by direct compression method and were subjected to in vitro drug dissolution for 8 hrs in a gastric fluid media by using thermal shaker with a shaking speed of 50 rpm at a temperature of 37 ± 0.5°C. The in vitro release study as well as retention time of bioadhesive tablets on mucous membrane were investigated to develop a bioadhesive polymer based controlled release delivery system and to evaluate the performance of such delivery device. Na-CMC, HPMC and Xanthan gum based tablets showed greater bio-adhesive strength where as gelatin and PVP K-30 based tablets showed poor bioadhesive strength. Na-CMC and Xanthun gum loaded tablets were not discharged from the mucous membrane and these tablets were fully dissolved in the gastric fluid. Xanthan gum, Na-CMC and HPMC based formulation showed nearly zero-order release. On the contrary, gelatin and PVP K-30 based formulation showed a burst release within one hour of dissolution. Key words: Bio-adhesion, Release profile, theophylline anhydrous. Dhaka Univ. J. Pharm. Sci. Vol.5(1-2) 2006 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


2019 ◽  
Vol 9 (4) ◽  
pp. 601-608 ◽  
Author(s):  
Hamid Rahmani ◽  
Ali Fattahi ◽  
Komail Sadrjavadi ◽  
Salar Khaledian ◽  
Yalda Shokoohinia

Purpose: The aim of this study is to prepare 5-fluorouracil (5-FU) loaded silk fibroin nanoparticles(SFNPs) and to achieve a controlled release delivery system with the high loading capacity. Methods: SFNPs with 1:1, 1:3, and 1:10 ratios of 5-FU to silk fibroin were prepared. SFNPswere characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD)analysis, Scanning electron microscope (SEM), and Transmission electron microscope (TEM).Loading efficiency, in vitro release, and cell viability were studied for optimal SFNPs. Results: The ratio of 1:1 was optimal formulation with the size and polydispersity index (PDI)of 221.03 nm and 0.093 before freeze drying, and 286.7 nm and 0.154 after freeze dryingby lactose, respectively. The loading efficiency and loading content of this ratio were 52.32%and 34.35%, respectively. FT-IR and XRD analysis indicated the conformational change (fromrandom coil to β-sheet) in the structure of nanoparticles by increasing amount of the drug, whichcaused the smaller size, the higher loading efficiency, and the slower release pattern. The drugloadednanoparticles reached to the half maximal inhibitory concentration (IC50) that werecomparable with free drug on MCF7 (human breast cancer) cell line. Conclusion: This study was planned to achieve a promising controlled release drug deliverysystem for carrying 5-FU, as a potent anticancer drug. SFNPs were found proper candidates fordelivery of a hydrophilic drug such as 5-FU.


Author(s):  
TAIHASEEN MOMIN ◽  
ARVIND GULBAKE

Objective: Chitosan nanoparticles (ChNP’s) have been widely studied for drug and gene delivery. In this study, we prepared ChNP’s for co-delivery of doxorubicin (DOX) and siRNA for cancer treatment. Methods: The ionic gelation method was used to develop ChNP’s. The positively charged DOX and negatively charged siRNA encapsulated into ChNP’s. The particle size and zeta potential of the developed ChNP’s were studied by particle size analyzer and morphology was examined by TEM. Encapsulation of DOX in ChNP’s was confirmed by FTIR spectroscopy. The encapsulation efficiency and in vitro release of DOX were studied by UV-Vis spectrophotometry. The siRNA loading into ChNP’s was confirmed by gel retardation assay. Results: The developed ChNP’s showed particle size ranged from 127±6.5 to 215±8.5 nm with zeta potential ranged from 16.5±0.3 to 25.8±0.3. Transmission Electron Micrograph showed DOX and siRNA encapsulated ChNP’s are polydisperse and spherical in nature. FTIR study confirmed the binding of DOX with ChNP’s with absorption peaks at 1016 cm-1,1316 cm-1, 1412 cm-1, 1645 cm-1 and 3370 cm-1. The TPP:Ch ratio 0.1:0.5 showed the highest encapsulation efficiency 69±3.24%, with initial burst release and then sustained or slow release of DOX. Agarose gel retardation study confirmed the encapsulation of siRNA in ChNP’s by retarded migration of siRNA-ChNP’s in comparison with naked siRNA. Conclusion: The developed ChNP’s successfully encapsulated the DOX and siRNA and showed the sustain release of DOX. In conclusion, our study shown that ChNP’s is having a potential of co-loading of DOX-siRNA as an efficient drug delivery system for the treatment of various cancers such as colorectal cancer, breast cancer etc.


2021 ◽  
Vol 22 (6) ◽  
pp. 2792
Author(s):  
Suji Ryu ◽  
Seungyeop Park ◽  
Ha Yeon Lee ◽  
Hyungjun Lee ◽  
Cheong-Weon Cho ◽  
...  

Recently, nano- and micro-particulate systems have been widely utilized to deliver pharmaceutical compounds to achieve enhanced therapeutic effects and reduced side effects. Poly (DL-lactide-co-glycolide) (PLGA), as one of the biodegradable polyesters, has been widely used to fabricate particulate systems because of advantages including controlled and sustained release, biodegradability, and biocompatibility. However, PLGA is known for low encapsulation efficiency (%) and insufficient controlled release of water-soluble drugs. It would result in fluctuation in the plasma levels and unexpected side effects of drugs. Therefore, the purpose of this work was to develop microcapsules loaded with alginate-coated chitosan that can increase the encapsulation efficiency of the hydrophilic drug while exhibiting a controlled and sustained release profile with reduced initial burst release. The encapsulation of nanoparticles in PLGA microcapsules was done by the emulsion solvent evaporation method. The encapsulation of nanoparticles in PLGA microcapsules was confirmed by scanning electron microscopy and confocal microscopy. The release profile of hydrophilic drugs can further be altered by the chitosan coating. The chitosan coating onto alginate exhibited a less initial burst release and sustained release of the hydrophilic drug. In addition, the encapsulation of alginate nanoparticles and alginate nanoparticles coated with chitosan in PLGA microcapsules was shown to enhance the encapsulation efficiency of a hydrophilic drug. Based on the results, this delivery system could be a promising platform for the high encapsulation efficiency and sustained release with reduced initial burst release of the hydrophilic drug.


2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


2019 ◽  
Vol 9 (1) ◽  
pp. 76-85 ◽  
Author(s):  
R. Nithya ◽  
K. Siram ◽  
R. Hariprasad ◽  
H. Rahman

Background: Paclitaxel (PTX) is a potent anticancer drug which is highly effective against several cancers. Solid lipid nanoparticles (SLNs) loaded with anticancer drugs can enhance its toxicity against tumor cells at low concentrations. Objective: To develop and characterize SLNs of PTX (PSLN) to enhance its toxicity against cancerous cells. Method: The solubility of PTX was screened in various lipids. Solid lipid nanoparticles of PTX (PSLN) were developed by hot homogenization method using Cutina HR and Gelucire 44/14 as lipid carriers and Solutol HS 15 as a surfactant. PSLNs were characterized for size, morphology, zeta potential, entrapment efficiency, physical state of the drug and in vitro release profile in 7.4 pH phosphate buffer saline (PBS). The ability of PTX to enhance toxicity towards cancerous cells was tested by performing cytoxicity assay in MCF7 cell line. Results: Solubility studies of PTX in lipids indicated better solubility when Cutina HR and Gelucire 44/14 were used. PSLNs were found to possess a neutral zeta potential with a size range of 155.4 ± 10.7 nm to 641.9 ± 4.2 nm. In vitro release studies showed a sustained release profile for PSLN over a period of 48 hours. SLNs loaded with PTX were found to be more toxic in killing MCF7 cells at a lower concentration than the free PTX.


2010 ◽  
Vol 5 (4) ◽  
pp. 155892501000500 ◽  
Author(s):  
Hang Liu ◽  
Karen K. Leonas ◽  
Yiping Zhao

Poly(εepsilon;-caprolactone) (PCL) electrospun fibers containing ampicillin sodium salt have been produced and twisted into nanofiber yarns. The fiber diameters and crystallinity, the in vitro antimicrobial properties of the yarns, and the in vitro release of ampicillin from yarns containing various ampicillin concentrations are studied. Decreased fiber diameters and reduced diameter variation are observed with the addition of ampicillin salt into the polymer solution. The results from the zone of inhibition test of the yarns against both gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae indicate that the released ampicillin retains its effectiveness after the production processes, therefore the as-spun yarns are antimicrobial active. A burst release of ampicillin from the yarns has been observed in the first hour, and the release is almost completed in 96 hours. The burst release is believed to be due to the low compatibility of ampicillin with PCL, the accumulation of ampicillin on fiber surface and the small fiber diameters. An empirical release model is developed to describe the release profile. The results indicate that the electrospun nanofibers yarns will have a great potential to be used for biomaterials, such as surgical sutures, to decrease the surgical site infection rate.


Author(s):  
Noha Saleh ◽  
Soha Elshaer ◽  
Germeen Girgis

Background: Fluconazole (FLZ), a potent antifungal medication, is characterized by poor water solubility that reduced its antifungal efficacy. Objective: This study aimed to prepare FLZ-loaded polymeric nanoparticles (NPs) by using different polymers and techniques as a mean of enhancing the antifungal activity of FLZ. Methods: NP1, NP2, and NP3 were prepared by the double emulsion/solvent evaporation method using PLGA, PCL, and PLA, respectively. The ionotropic pre-gelation technique was applied to prepare an alginate/chitosan-based formulation (NP4). Particle size, zeta potential, encapsulation efficiency, and loading capacity were characterized. FT-IR spectra of FLZ, the polymers, and the prepared NPs were estimated. NP4 was selected for further in-vitro release evaluation. The broth dilution method was used to assess the antifungal activity of NP4 using a resistant clinical isolate of Candida albicans. Results: The double emulsion method produced smaller-sized particles (<390 nm) but with much lower encapsulation efficiency (< 12%). Alternatively, the ionic gelation method resulted in nanosized particles with a markedly higher encapsulation efficiency of about 40%. The FT-IR spectroscopy confirmed the loading of the FLZ molecules in the polymeric network of the prepared NPs. The release profile of NP4 showed a burst initial release followed by a controlled pattern up to 24 hours with a higher percent released relative to the free FLZ suspension. NP4 was able to reduce the value of MIC of FLZ by 20 times. Conclusion: The antifungal activity of FLZ against C. albicans was enhanced markedly via its loading in the alginate/chitosan-based polymeric matrix of NP4.


Sign in / Sign up

Export Citation Format

Share Document