scholarly journals Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3651
Author(s):  
Karolina Gzyra-Jagieła ◽  
Konrad Sulak ◽  
Zbigniew Draczyński ◽  
Stepan Podzimek ◽  
Stanisław Gałecki ◽  
...  

Plastic products, especially in the packaging industry, have become the main commodities penetrating virtually every aspect of our lives. Unfortunately, their omnipresence is not neutral to the natural environment. Pollution in the form of microplastics is a global problem. Therefore, green technologies that enter into the circular economy become an important topic. As part of the research work, the modification of poly(lactic acid) has been studied for use in the packaging industry. Due to its intrinsic rigidity, plasticizing substances had to be introduced in PLA in order to improve its plastic deformability. Both high-molecular compounds such as ethoxylated lauryl alcohol, block copolymer of ethylene oxide and propylene oxide, and ethoxylated stearic acid as well as low-molecular compounds such as di-2-ethylhexyl adipate, di-2-ethylhexyl sebacate, and triethyl citrate were used. The samples extruded from plasticized polymers were characterized using differential scanning calorimetry, thermal gravimetric analysis, and mechanical properties including Young’s modulus. The melt flow rate (MFR) and molar mass distribution were determined. For all modified samples the glass transition temperature, depending on the plasticizer used, was shifted towards lower values compared to the base polymer. The best result was obtained for di-2-ethylhexyl adipate (ADO) and di-2-ethylhexyl sebacate (SDO). The elongation at break increased significantly for ADO at about 21%. The highest elongation was obtained for SDO (about 35%), although it obtained a higher glass temperature. The degradation of the polymer was not observed for both plasticizers. For these plasticizers (ADO and SDO) it also lowered Young’s module by about 26%, and at the infrared spectrum deformation of peaks were observed, which may indicate the interaction of the ester carbonyl group of PLA with plasticizers. Therefore it can be concluded that they are good modifiers. The selected plasticizers that are used in the production of food contact materials, in particular in the production of PVC (polyvinyl chloride) food films, also exhibited great potential to be applied to PLA food films, and exhibit better properties than the citrate, which are indicated in many publications as PLA plasticizers.

2020 ◽  
pp. 002199832096353
Author(s):  
Seda Hazer ◽  
Ayse Aytac

Poly (Lactic Acid) (PLA)/Polycarbonate (PC) blend has gained much attention as a bio-based polymeric material in various industrial fields. This study aims to improve the properties of PLA/PC blend reinforced with glass fiber (GF) and carbon fiber (CF) mixture to be produced for industrial use. For this purpose, 50PLA/50PC blend was prepared and used as a control sample. Then, 30% by weight CF and 30% GF were added to the matrix separately. To examine the effect of the use of CF and GF together, the composites were prepared as a mixture form of fibers by adding 5-10-15% CF and 5-10-15% GF, respectively, to the control blend in pairs. All composites compounded with the laboratory-scale twin-screw mini extruder and molded by injection molding. The effects of using synthetic fiber mixture were evaluated in terms of the mechanical, thermal and flammability properties. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), tensile test, scanning electron microscopy (SEM), limiting oxygen index (LOI), heat release rate (HRR) test were carried for the characterization of composites. The highest tensile strength values ​​and maximum % crystallinity values were obtained for the 15CF/15GF fiber mixture containing PLA/PC composite as 113.7 MPa and 21.4, respectively. CO yield (COY), HRR, and total heat release rate were reduced significantly by using synthetic fibers and fiber mixture.


2019 ◽  
Vol 17 (1) ◽  
pp. 1266-1278
Author(s):  
Omaima Alhaddad ◽  
Safaa H. El-Taweel ◽  
Yasser Elbahloul

AbstractThe effects of bacterial poly(hydroxyoctanoate) (PHO) and talc on the nonisothermal cold crystallization behaviours of poly(lactic acid) (PLA) were analysed with differential scanning calorimetry (DSC), and the thermal stability of the samples was observed with thermal gravimetric analysis (TGA). The modified Avrami’s model was used to describe the nonisothermal cold crystallization kinetics of neat PLA and its blends. The activation energies E for nonisothermal cold crystallization were calculated by the isoconversional method of Kissinger-Akahira-Sunose (KAS). The DSC results showed that the PLA/PHO blends were immiscible in the whole studied range, and as the PHO and talc content increased, the crystallization rate of PLA accelerated, and the crystallinity of PLA in the PLA samples increased. The values of the Avrami exponent indicated that the nonisothermal cold crystallization of the neat PLA and its blends exhibited heterogeneous, three-dimensional spherulitic growth. The E values were strongly dependent on PHO and talc. The TGA results showed that the presence of PHO and talc slightly influenced the thermal stability of PLA.


2017 ◽  
Vol 31 (7) ◽  
pp. 865-881 ◽  
Author(s):  
JM Ferri ◽  
J Jordá ◽  
N Montanes ◽  
O Fenollar ◽  
R Balart

Hydroxyapatite (HA), a naturally occurring calcium orthophosphate, possesses the most similar chemical composition to human bone. In this research work, composite materials were prepared using poly(lactic acid) (PLA) as a polymer matrix and HA as an osteoconductive filler for potential use in medical applications. Composites with varying HA content comprised in the 10–30 wt% range were obtained by extrusion-compounding followed by injection molding. The effect of the HA loading on overall properties was assessed by mechanical characterization using tensile, flexural, impact, and hardness standard tests. Main thermal transitions of PLA-HA composites were obtained by differential scanning calorimetry (DSC) and degradation/decomposition at high temperatures was followed by thermogravimetric analysis. Dynamical behavior was assessed by dynamic mechanical thermal analysis and the dimensional stability was studied by thermomechanical analysis (TMA). As per the results, PLA-HA composites with 20–30 wt% HA offer the best-balanced properties with a remarkable increase in the Young’s modulus. The glass transition temperature remained almost constant with slight changes of less than 1°C as measured by both DSC and TMA. TMA also revealed a remarkable decrease in the coefficient of linear thermal expansion. The overall results confirm the usefulness of these materials from a mechanical point of view for biomedical applications as they are characterized by high stiffness, tensile strength, and dimensional stability.


2016 ◽  
Vol 852 ◽  
pp. 677-685
Author(s):  
Mei Li ◽  
Zhi Qiang Li ◽  
Wei Shao

The thermal properties of poly (lactic acid)[PLA] modified poly (3 –hydroxybutyrate –co-4 -hydroxbutyrate) [P(3HB-co-4HB)], prepared by melt blending with different blending ratios were investigated by differential scanning calorimetry [DSC], thermogravimetry [TGA], melt flow rate [MFR] and tensile test measurements, and scanning electron microscopy [SEM]. The DSC tests showed that the glass transition temperature, Tg, of P(3HB-co-4HB) increased from-7°C to 56°C when mixed with 50% to 67% of PLA. A decrease in crystallization temperature, Tc, of P(3HB-co-4HB) broadened the melting interval. The MFR tests indicated the blends had good flow properties and the variation of the PLA content had little effect on the flow properties. The tensile tests showed that PLA improved the mechanical properties of P(3HB-co-4HB), including the tensile strength and elongation at break. The blends had the best mechanical properties when the percentage of PLA was 64%.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1283
Author(s):  
Ivan Dominguez-Candela ◽  
Jose Miguel Ferri ◽  
Salvador Cayetano Cardona ◽  
Jaime Lora ◽  
Vicent Fombuena

The use of a new bio-based plasticizer derived from epoxidized chia seed oil (ECO) was applied in a poly(lactic acid) (PLA) matrix. ECO was used due to its high epoxy content (6.7%), which led to an improved chemical interaction with PLA. Melt extrusion was used to plasticize PLA with different ECO content in the 0–10 wt.% range. Mechanical, morphological, and thermal characterization was carried out to evaluate the effect of ECO percentage. Besides, disintegration and migration tests were studied to assess the future application in packaging industry. Ductile properties improve by 700% in elongation at break with 10 wt.% ECO content. Field emission scanning electron microscopy (FESEM) showed a phase separation with ECO content equal or higher than 7.5 wt.%. Thermal stabilization was improved 14 °C as ECO content increased. All plasticized PLA was disintegrated under composting conditions, not observing a delay up to 5 wt.% ECO. Migration tests pointed out a very low migration, less than 0.11 wt.%, which is to interest to the packaging industry.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


2016 ◽  
Vol 852 ◽  
pp. 10-15
Author(s):  
Sahas Bansal ◽  
M. Ramachandran ◽  
Pramod Raichurkar

Green composites shaped by mixture of biodegradable polymers and natural fibers have spellbound massive interest in current years due to their environmentally valuable properties and also to decrease our dependency on the non-renewable resources. Due to the environmental advantages and light weight of natural fibers, an increasing quantity of natural fibers has been used to replace synthetic fibers composites. Coir fiber poly-lactic acid (PLA)/ poly-propylene (PP) resin reinforced polymeric composites have been developed with 90o orientation. The composition of PLA and PP for resin preparation is taken in the ratio 95:05 whereas for the composite, resins and coir fiber in 80:20. The compression molding technique is applied and then the tests are carried out. Mechanical tests (Impact and Hardness), Micro structural analysis (Fourier Transform Infrared Spectroscopy and Optical Imaging) and Differential Scanning Calorimetry are conducted. According to the investigational verification, the new biodegradable composite shows significant results on par with synthetic/ man made composites and the advantages of using bio-composites has been indicated with simplicity.


2021 ◽  
Vol 887 ◽  
pp. 3-9
Author(s):  
T.R. Deberdeev ◽  
A.I. Akhmetshina ◽  
S.V. Grishin

The copolyesters derived from dimethyl ester of terephthalic acid, ethylene glycol, and 4-hydroxybenzoic acid (HBA) have been synthesized via catalytically promoted polycondensation omitting the acetylation step. FTIR spectroscopy results have evidenced an insertion of HBA along a polymer backbone. Of note, thermal gravimetric analysis has shown that the HBA moieties substantially improved the thermal stability of polyesters. As found by differential scanning calorimetry and polarizing microscopy, the copolyesters are capable of forming an anisotropic phase in a temperature range of 150-170 °C. Additionally, the free surface energy of the samples was determined to evaluate the compatibility of thermotropic copolyesters with other high-molecular compounds.


2019 ◽  
pp. 089270571986827 ◽  
Author(s):  
Mehrnoush Monshizadeh ◽  
Sajad Seifi ◽  
Iman Hejazi ◽  
Javad Seyfi ◽  
Hossein Ali Khonakdar

Synergistic effects of organo-modified Mg-Al layered double hydroxide (LDH) and triethyl citrate (TEC) on the properties of poly(lactic acid) (PLA) were demonstrated. PLA/LDH nanocomposites in the absence and presence of TEC were fabricated via solution casting technique. Morphological analysis revealed that as the LDH concentration increases, the number of aggregations is also increased; however, introduction of TEC considerably enhanced the dispersion quality of LDHs. Differential scanning calorimetry results showed that the addition of LDH and TEC had no significant influence on the crystallinity of nanocomposites obtained from solution casting. In contrast, once the samples were cooled from melt, the concurrent use of LDH and TEC led to a dramatic enhancement in the crystallinity of PLA ( X c = 55.5%). Moreover, the LDH nanoparticles counterbalanced the adverse effects of plasticization by TEC leading to enhanced toughness of the final nanocomposites. LDH had also a positive influence on thermal stability of PLA, indicating the heat-insulating role of LDH particles. In conclusion, the concurrent use of LDH and TEC could extend the applicability of PLA especially in food packaging applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Rai Muhammad Sarfraz ◽  
Muhammad Rouf Akram ◽  
Muhammad Rizwan Ali ◽  
Asif Mahmood ◽  
Muhammad Usman Khan ◽  
...  

Current research work was carried out for gastro-protective delivery of naproxen sodium. Polyethylene glycol-g-poly (methacrylic acid) nanogels was developed through free radical polymerization technique. Formulation was characterized for swelling behaviour, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, Differential scanning calorimetry (DSC), and Thermal Gravimetric Analysis (TGA), Powder X-ray diffraction (PXRD), Zeta size distribution, and Zeta potential measurements, and in-vitro drug release. pH dependent swelling was observed with maximum drug release at higher pH. PXRD studies confirmed the conversion of loaded drug from crystalline to amorphous form while Zeta size measurement showed size reduction. On the basis of these results it was concluded that prepared nanogels proved an effective tool for gastro-protective delivery of naproxen sodium.


Sign in / Sign up

Export Citation Format

Share Document