scholarly journals Effect of Egg-Coating Material Properties by Blending Cassava Starch with Methyl Celluloses and Waxes on Egg Quality

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3787
Author(s):  
Pornchai Rachtanapun ◽  
Nattagarn Homsaard ◽  
Araya Kodsangma ◽  
Noppol Leksawasdi ◽  
Yuthana Phimolsiripol ◽  
...  

An egg-coating material was developed to extend the shelf-life and freshness of eggs by blending cassava starch (CS) with gelling agents and waxes. The effects of the properties of this egg coating on egg quality were investigated. Hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC), beeswax, and paraffin wax were used. CS blended with low-molecular-weight paraffin (Paraffin(L)) and CMC coating material displayed a tensile strength of 4 MPa, 34% elongation at break, 0.0039 g day−1 m−2 water vapor permeability, and a water contact angle of 89° at 3 min. Eggs coated with CS/CMC/Paraffin(L) solutions had a Haugh unit value of 72 (AA grade) and exhibited a weight loss of 2.4% in 4 weeks. CMC improved the compatibility of CS and Paraffin(L). This improvement and the hydrophobicity of Paraffin(L) provided suitable mechanical and water-resistance properties to the coating material that helped to maintain the quality of the coated AA-grade eggs with low weight loss for 4 weeks.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1782
Author(s):  
Juan Manuel Tirado-Gallegos ◽  
Paul Baruk Zamudio-Flores ◽  
Miguel Espino-Díaz ◽  
René Salgado-Delgado ◽  
Gilber Vela-Gutiérrez ◽  
...  

High molecular weight chitosan (≈322 kDa) was obtained from chitin isolated from Brachystola magna (Girard) to produced biodegradable films. Their physicochemical, mechanical and water vapor permeability (WVP) properties were compared against commercial chitosan films with different molecular weights. Brachystola magna chitosan films (CFBM) exhibited similar physicochemical and mechanical characteristics to those of commercial chitosans. The CFBM films presented lower WVP values (10.01 × 10−11 g/m s Pa) than commercial chitosans films (from 16.06 × 10−11 to 64.30 × 10−11 g/m s Pa). Frankfurt-type sausages were covered with chitosan films and stored in refrigerated conditions (4 °C). Their quality attributes (color, weight loss, pH, moisture, texture and lipid oxidation) were evaluated at 0, 5, 10, 15 and 20 days. Sausages covered with CFMB films presented the lowest weight loss (from 1.24 to 2.38%). A higher increase in hardness (from 22.32 to 30.63 N) was observed in sausages covered with CFMB films. Compared with other films and the control (uncovered sausages), CFMB films delay pH reduction. Moreover, this film presents the lower lipid oxidation level (0.10 malonaldehyde mg/sample kg). Thus, chitosan of B. magna could be a good alternative as packaging material for meat products with high-fat content.


Author(s):  
Grégoire David ◽  
Laurent Heux ◽  
Stéphanie Pradeau ◽  
Nathalie Gontard ◽  
Hélène Angellier-Coussy

Abstract This paper aims at investigating the potential of vine shoots (ViSh) upcycling as fillers in novel poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) based biocomposites. ViSh particles of around 50 µm (apparent median diameter) were obtained combining dry grinding processes, and mixed with PHBV using melt extrusion. Thermal stability and elongation at break of biocomposites were reduced with increasing contents of ViSh particles (10, 20 and 30 wt%), while Young’s modulus and water vapor permeability were increased. It was shown that a surface gas-phase esterification allowed to significantly increase the hydrophobicity of ViSh particles (increase of water contact angles from 59° to 114°), leading to a reduction of 27% in the water vapor permeability of the biocomposite filled with 30 wt% of ViSh. The overall mechanical performance was not impacted by gas-phase esterification, demonstrating that the interfacial adhesion between the virgin ViSh particles and the PHBV matrix was already good and that such filler surface treatment was not required in that case. It was concluded that ViSh particles can be interestingly used as low cost fillers in PHBV-based biocomposites to decrease the overall cost of materials.


2018 ◽  
Vol 105 ◽  
pp. 637-644 ◽  
Author(s):  
M.K.S. Monteiro ◽  
V.R.L. Oliveira ◽  
F.K.G. Santos ◽  
E.L. Barros Neto ◽  
R.H.L. Leite ◽  
...  

2000 ◽  
Vol 9 (1) ◽  
pp. 23-35 ◽  
Author(s):  
P. TANADA-PALMU ◽  
H. HELÉN ◽  
L. HYVÖNEN

Edible films from wheat gluten were prepared with various amounts of glycerol as a plasticizer. Water vapor permeability, oxygen permeability, tensile strength and percentage elongation at break at different water activities ( aw ) were measured. Films with low amounts of glycerol had lower water vapor and oxygen permeabilities, higher tensile strength and lower elongation at break. Wheat gluten coatings reduced weight loss during two weeks of storage for cherry tomatoes and sharon fruits compared to uncoated controls. A bilayer film of wheat gluten and beeswax significantly lowered weight loss from coated cheese cubes compared to single layer coating of wheat gluten.;


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 595 ◽  
Author(s):  
Mohammad Hassan ◽  
Linn Berglund ◽  
Ragab Abou-Zeid ◽  
Enas Hassan ◽  
Wafaa Abou-Elseoud ◽  
...  

Nanofibers isolated from unbleached neutral sulfite rice straw pulp were used to prepare transparent films without the need to modify the isolated rice straw nanofibers (RSNF). RSNF with loading from 1.25 to 10 wt.% were mixed with cellulose acetate (CA) solution in acetone and films were formed by casting. The films were characterized regarding their transparency and light transmittance, microstructure, mechanical properties, crystallinity, water contact angle, porosity, water vapor permeability, and thermal properties. The results showed good dispersion of RSNF in CA matrix and films with good transparency and homogeneity could be prepared at RSNF loadings of less than 5%. As shown from contact angle and atomic force microscopy (AFM) measurements, the RSNF resulted in increased hydrophilic nature and roughness of the films. No significant improvement in tensile strength and Young’s modulus was recorded as a result of adding RSNF to CA. Addition of the RSNF did not significantly affect the porosity, crystallinity and melting temperature of CA, but slightly increased its glass transition temperature.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1606
Author(s):  
Peng Yin ◽  
Jinglong Liu ◽  
Wen Zhou ◽  
Panxin Li

To improve the functional properties of starch-based films, chitin (CH) was prepared from shrimp shell powder and incorporated into corn starch (CS) matrix. Before blending, maleic anhydride (MA) was introduced as a cross-linker. Composite CS/MA-CH films were obtained by casting-evaporation approach. Mechanical property estimation showed that addition of 0–7 wt % MA-CH improved the tensile strength of starch films from 3.89 MPa to 9.32 MPa. Elongation at break of the films decreased with the addition of MA-CH, but the decrease was obviously reduced than previous studies. Morphology analysis revealed that MA-CH homogeneously dispersed in starch matrix and no cracks were found in the CS/MA-CH films. Incorporation of MA-CH decreased the water vapor permeability of starch films. The water uptake of the films was reduced when the dosage of MA-CH was below 5 wt %. Water contact angles of the starch films increased from 22° to 86° with 9 wt % MA-CH incorporation. Besides, the composite films showed better inhibition effect against Escherichia coli and Staphylococcus aureus than pure starch films.


2012 ◽  
Vol 506 ◽  
pp. 311-314 ◽  
Author(s):  
W. Pimpa ◽  
C. Pimpa ◽  
P. Junsangsree

Fresh durian seed consists largely of starch and can be considered such a suitable raw material for producing biodegradable films. The aim of this work was to develop biodegradable films based on durian seed starch (DSS) and to characterize their water barrier, microscopic and mechanical properties. DSS films were prepared by casting with glycerol as plasticizer. Corn starch and cassava starch, commonly used in food processing, were chosen to prepare films and compare their properties to the DSS-based films. Using a second biopolymer, carboxymethyl cellulose (CMC), in the DSS based composite has been studied as a strategy to improve their important properties. Water vapor permeability and elongation values were improved significantly (p<0.05) when 5% (w/w DSS) CMC was incorporated. Therefore, preparing biodegradable films from DSS is a new alternative for using this raw material which is sometimes much cheaper than commercial starches


HortScience ◽  
1993 ◽  
Vol 28 (10) ◽  
pp. 1035-1038 ◽  
Author(s):  
Ahmad Shirazi ◽  
Arthur C. Cameron

A method was developed to measure transpiration rates and apparent water-vapor permeability coefficients (P'H2O) of detached fruit using an analytical balance equipped with a humidity chamber, wide-range humidity-generating and sensing devices, and a datalogger. The system was designed to monitor weight changes with time and, hence, weight loss of individual fruit during exposure to specific relative humidities (RHs) and temperatures. Weight loss was corrected for loss due to respiratory exchange of 02 and CO2 before calculating P'H2O. Values of P'H2O for tomatoes obtained using this method over periods of 5 minutes to 24 hours ranged from 3 to 12 nmol·cm-2·s-1·kPa-1 at 20C, depending on the experimental conditions. These values are similar to previously published values and to those obtained in a conventional weight-loss experiment, which involved intermittent weighing. P'H20 for tomatoes dropped ≈15% in 24 hours. P'H20 increased with a transient increase in RH; the extent of the increase was variable from fruit to fruit, ranging from 5% to 100% over 30% to 90% RH. The change was reversible in that P'H2O increased and decreased within minutes following shifts in RH. Similar changes were found for strawberry P'H20. The increase in P'H2O may be due, in part, to a direct effect of water vapor on the water transport properties of the cuticular polymer and surface temperature depression as a result of evaporative cooling. At 50% RH and 20C, water vapor diffuses from tomatoes 50 times faster than O2 enters on a molar basis. This information will be useful for modeling RH changes in modified-atmosphere packages.


2013 ◽  
Vol 634-638 ◽  
pp. 1955-1961
Author(s):  
Yuan Yuan Du ◽  
Peng Wu Zheng

Two sepiolites (SEPs) were respectively used as the fillers in glycerol plasticized-cassava starch (GPS) matrix by the casting process. Scanning electron microscopy proved that SEPs were dispersed well in the GPS matrix. Fourier transform infrared spectroscopy indicated that silanol groups at the external surface of SEPs could form the interaction with C-O-H and C-O-C groups in starch molecules. The introduction of SEPs improved the tensile strength, thermal stability, the pasting viscosity and restrained water vapor permeability, but reduced the elongation at break of the composites. SEP-fiber imparted the composites better properties than SEP-velvet, except for the resistance of moisture adsorption. SEP-velvet could decrease the water contents at the equilibrium of the composites.


Sign in / Sign up

Export Citation Format

Share Document