scholarly journals Roles of Chitosan as Bio-Fillers in Radiation-Vulcanized Natural Rubber Latex and Hybrid Radiation and Peroxide-Vulcanized Natural Rubber Latex: Physical/Mechanical Properties under Thermal Aging and Biodegradability

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3940
Author(s):  
Arkarapol Thumwong ◽  
Worawat Poltabtim ◽  
Patcharaporn Kerdsang ◽  
Kiadtisak Saenboonruang

Although natural rubber was regarded as biodegradable, the degradation is a time-consuming process that could take weeks or months for any degradation or substantial weight loss to be observable, resulting in the need for novel processes/methods to accelerate the rubber degradation. As a result, this work investigated the potential utilization of chitosan (CS) as a biodegradation enhancer for radiation-vulcanized natural rubber latex (R-VNRL) and hybrid radiation and peroxide-vulcanized natural rubber latex (RP-VNRL) composites, with varying CS contents (0, 2, 4, or 6 phr). The R-VNRL samples were prepared using 15 kGy gamma irradiation, while the RP-VNRL samples were prepared using a combination of 0.1 phr tert-butyl hydroperoxide (t-BHPO) and 10 kGy gamma irradiation. The properties investigated were biodegradability in the soil and the morphological, chemical, mechanical, and physical properties, both before and after undergoing thermal aging. The results indicated that the biodegradability of both the R-VNRL and RP-VNRL composites was enhanced with the addition of CS, as evidenced by increases in the percentage weight loss (% weight loss) after being buried in soil for 8 weeks from 6.5 ± 0.1% and 6.4 ± 0.1% in a pristine R-VNRL and RP-VNRL samples, respectively, to 10.5 ± 0.1% and 10.2 ± 0.1% in 6-pph CS/R-VNRL and 6-pph CS/RP-VNRL composites, respectively, indicating the biodegradation enhancement of approximately 60%. In addition, the results revealed that the addition of CS could increase the value of tensile modulus by 119%, while decrease the values of tensile strength and elongation at break by 50% and 43%, respectively, in the specimens containing 6-phr CS. In terms of the color appearances, the samples were lighter and yellower after the addition of CS, as evidenced by the noticeably increased L* and b* values, based on the CIE L*a*b* color space system. Furthermore, the investigation into the effects of thermal aging showed that the overall tensile properties for both curing systems were reduced, while varying degrees of color change were observed, with the pristine R-VNRL and RP-VNRL samples having more pronounced degradation/changes for both properties. In conclusion, the overall results suggested that CS had great potential to be applied as a bio-filler in R-VNRL and RP-VNRL composites to effectively promote the biodegradability, environmental friendliness, and resistance to thermal degradation of the composites.

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Kazi Md Zakir Hossain ◽  
Nashid Sharif ◽  
N. C. Dafader ◽  
M. E. Haque ◽  
A. M. Sarwaruddin Chowdhury

A range of radiation vulcanised natural rubber latex (RVNRL) films were prepared using various concentrations of aqueous extracts of mature Diospyros peregrina fruit, which acted as a cross-linking agent. The surface of the RVNRL films exhibited an aggregated morphology of the rubber hydrocarbon with increasing roughness due to increasing fruit extract contents in the latex. An improvement in tensile strength, tensile modulus, and storage modulus of RVNRL films was observed with the addition of fruit extracts compared to the control film due to their cross-linking effect. The glass transition (Tg) temperature of all the RVNRL films was found to be at around −61.5°C. The films were also observed to be thermally stable up to 325°C, while the maximum decomposition temperature appeared at around 375°C. The incorporation of fruit extracts further revealed a significant influence on increasing the crystallinity, gel content, and physical cross-link density of the RVNRL films.


Author(s):  
Mahiratul Husna Mustaffar ◽  
◽  
Aliff Hisyam A. Razak ◽  

Disposal latex and synthetic rubber gloves is troublesome such that disposal via incineration and land fill may release poisonous gasses and contaminate soil and water, respectively. As solution to latex and synthetic rubber, biodegradable glove is extensively studied. A bio-based filler is extracted from food waste and blended into natural rubber latex (NRL) as a composite NRL. The effect of biodegradability of composite NRL was studied by varying the loading of bio-based filler in a form of starch dispersion and blended into NRL mixture. Herein some amount of starch can be extracted from cassava peel to be incorporated in NRL for a sustainable and yet biodegradable glove. Previous work on incorporation of cassava-peel filler in NRL has shown a biodegradability without compromising the pristine strength of NRL film at 50% loading starch. In this project, tensile strength and weight loss of prepared composite NRL films were optimised via Taguchi and Response Surface Method (RSM) by means of Design Expert software by varying starch/filler loading, curing temperature and curing drying duration. Due to inadequate data, the optimisation from that previous prepared composite NRL was compared with similar work which utilising NRL and bio-based filler. For Pulungan (2020) study, it can be concluded that the tensile strength of cassava peel starch biodegradable film has the best condition at 50°C to 60°C at approximately 5.5 hours. Elongation optimum conditions shows contrast value of temperature and time. Meanwhile, for Wendy (2020) study, it shows the best percentage loading of cassava-peel starch is at 20% to achieve high stress and strain at break. The optimised mechanical properties via Taguchi and RSM are rather different and hence validation on mechanical properties at above mentioned conditions need to be performed experimentally.


2015 ◽  
Vol 1123 ◽  
pp. 387-390 ◽  
Author(s):  
Hamidah Harahap ◽  
Adrian Hartanto ◽  
Kelvin Hadinatan ◽  
Indra Surya ◽  
Baharin Azahari

The effect of aging on mechanical properties of natural rubber latex (NRL) products filled with alkanolamide-modified cassava peel waste powder (CPWP) was studied. CPWP used as fillers was prepared by milling and sieving it until the size of 100 mesh. The powder then was dispersed in a suspension containing water and alkanolamide in order to modify the prepared powders. The dispersion system of 10 pphr (part per hundred rubber) then was added into NRL matrix followed by pre-vulcanization at 70°C for 10 minutes. The NRL compound then were casted into films by coagulant dipping method then dried at 120°C for 10 minutes. Afterwards, the films were allowed to cool at room temperature for 24 hours before being aged in a circulation of hot air for 24 hours at 70°C. The properties such as tensile strength, tensile modulus, and elongation at break were evaluated between the aged samples and the unaged samples. From this study, it showed that the aged films have increasing value of tensile strength and tensile modulus while the value of elongation at break decreases. These datas are supported by Scanning Electron Microscope (SEM) micrographs which indicate that the change of morphology in NRL films occurs before and after aging.


2012 ◽  
Vol 1 (2) ◽  
pp. 11-15
Author(s):  
Erick Kamil ◽  
Emelya Khoesoema ◽  
Hamidah Harahap

Natural rubber latex products filled with bleached banana skin powder were identified by burying samples in soil. Soil burial was carried out by adding NPK fertilizer and without fertilizer. One of the tests which was carried out was weight loss calculation. Weight loss calculation showed that natural rubber latex products filled with bleached banana skin powder biodegraded faster than natural rubber latex products without filler. The addition of fertilizer also contributed to biodegradability of samples. The other test was FTIR (Fourier Transform Infrared Spectroscopy) test. The results of FTIR test showed there were structure changes in natural rubber latex which indicated natural rubber latex had been biodegraded.


2015 ◽  
Vol 1123 ◽  
pp. 352-355 ◽  
Author(s):  
Hamidah Harahap ◽  
Elmer Surya ◽  
Indra Surya ◽  
Baharin Azahari ◽  
Hanafi Ismail

Alkanolamide-modifed kaolin was added into natural rubber latex (NRL) pre-vulcanization system at 70°C and the products were formed into films by coagulant dipping method. The dipped films then were dried at 120°C for 15 and 30 min. The effect of drying time on properties of NRL films such as crosslink density, tensile strength, tensile modulus, and elongation at break was observed in this study. Results showed that longer drying time improved the properties of NRL films due to the additional formation of crosslink process in the NRL films. The longer drying time swelled the particles more in matrix as confirmed by Scanning Electron Microscopy (SEM) micrograph.


2015 ◽  
Vol 1119 ◽  
pp. 342-346
Author(s):  
Hamidah Harahap ◽  
Kelvin Hadinatan ◽  
Adrian Hartanto ◽  
Elmer Surya ◽  
Indra Surya ◽  
...  

Cassava peel is one of agricultural waste that abundantly found in environment. One approach to manage this waste is to apply it as filler in natural rubber latex. In this work, the cassava peel waste (CPW) was powdered and dispersed in alkanolamide-water dispersion system to modify its surface. The amount of fillers used was 0, 5, 10, 15, 20 and 25 phr (part per hundred rubber) and loaded in natural rubber latex (NRL) formulation system. The products then were formed by dipping method after the NRL formulation was pre-vulcanized at 70°C. The observed parameter includes crosslink density, tensile strength, tensile modulus and elongation at break. Scanning Electron Microscope (SEM) was used to study the morphology of tensile fracture in NRL film. The results show that 10 phr loading of modified fillers increases the crosslink density, tensile strength, and tensile modulus but decreases the elongation at break. SEM study also reveals that higher filler loading above 10 phr will create the agglomeration in rubber matrix.


2021 ◽  
Vol 6 (3) ◽  
pp. 143
Author(s):  
Barkah Wahyu Widianto ◽  
Mochamad Isa Faishal

ABSTRAKBerdasarkan data Produksi Karet di Indonesia terdapat peningkatan rata-rata 1,5% pada tahun 2015-2020, dimana produksi karet terbesar adalah Provinsi Sumatera Selatan yaitu 28,77%. Dengan peningkatan dan upaya pemanfaatannya maka dilakukan penelitian substitusi getah karet ke aspal. Getah karet yang digunakan adalah berbentuk padat dan berasal dari Pangkalan Balai, Sumatera Selatan. Penelitian ini bertujuan untuk mengkaji karakteristik aspal pen 60/70 disubstitusi dengan kadar getah karet alam 0%, 2,5%, 5%, dan 7,5%. Pengujian mengacu pada SE Menteri PUPR No 04/SE/M/2019. Hasil pengujian menunjukan nilai penetrasi, daktilitas, berat jenis, viskositas 135°C, kelarutan dalam TCE, TFOT, serta penetrasi dan daktilitas setelah kehilangan berat mengalami penurunan dengan ditambahnya kadar getah karet. Sedangkan nilai titik lembek, titik nyala, dan kehilangan berat mengalami peningkatan. Hal ini menunjukkan bahwa karakteristik aspal menjadi lebih keras dan diindikasi tahan terhadap deformasi tetapi rentan terhadap retak. Dari nilai pengujian disimpulkan bahwa kadar getah karet alam 5% memenuhi spesifikasi aspal modifikasi.Kata kunci: getah karet alam, aspal pen 60/70, aspal modifikasi ABSTRACTBased on Rubber Production data in Indonesia, there has been an average increasing of 1.5% for 2016-2020, where the largest production of rubber is South Sumatra Province, which is 28.77%. With the improvement and utilization efforts, research was carried out on mixing rubber sap into asphalt. The rubber sap that has been used is solid and comes from Pangkalan Balai, South Sumatra. This study aims to examine the characteristics of 60/70 pen asphalt substituted with natural rubber latex levels of 0%, 2.5%, 5%, and 7.5%. The test refers to SE Menteri PUPR No 04/SE/M/2019. The test results have shown the value of penetration, ductility, specific gravity, viscosity of 135° C, solubility in TCE, TFOT, penetration and ductility after weight loss has decreased with the addition of rubber sap content. Meanwhile, the values for softening point, flash point, and weight loss increased. This indicates that the characteristics of the asphalt become tougher and indicate that it is resistant to deformation but is prone to cracking. Judging from the test value, it can be concluded that the 5% natural rubber latex content meets the specifications of asphalt modification.Keywords: natural rubber, asphalt pen 60/70, asphalt modification


Sign in / Sign up

Export Citation Format

Share Document