scholarly journals Transparent Cellulose-Based Films Prepared from Used Disposable Paper Cups via an Ionic Liquid

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4209
Author(s):  
Zhen Xu ◽  
Qiwen Zhou ◽  
Lixiang Wang ◽  
Guangmei Xia ◽  
Xingxiang Ji ◽  
...  

Paper cups are widely employed in daily life with many advantages, but most of the used paper cups are incinerated or landfilled, due to the great challenge of separating the thin inner polyethylene (PE) coating, causing the waste of energy and the pollution of our environment. Therefore, recycling and converting the used paper cups into high-value materials is meaningful and important. In this work, transparent cellulose-based films were successfully prepared from the used paper cups via 1-allyl-3-methylimidazolium chloride ionic liquid after simple pretreatment. Additionally, the difference in properties and structures of cellulose-based films regenerated in different coagulation baths (water or ethanol) was also explored. It was found that the cellulose-based film possessed good thermal property and displayed better hydrophobicity than the traditional pure cellulose film. Moreover, they also demonstrated good mechanical property and the tensile strength of cellulose-based film regenerated in water can reach 31.5 Mpa, higher than those of cellulose-based film regenerated in ethanol (25.5 Mpa) and non-degradable polyethylene film (9–12 MPa), indicating their great potential as the packaging materials. Consequently, valorization of the low cost used paper cups and preparation of high-valve cellulose-based films were realized simultaneously by a facile and green process.

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3359
Author(s):  
Guangmei Xia ◽  
Qiwen Zhou ◽  
Zhen Xu ◽  
Jinming Zhang ◽  
Xingxiang Ji ◽  
...  

As the most important paper packaging materials, corrugated cartons with a tremendous amount of production demonstrate several advantages and have been widely used in daily life. However, waste corrugated cartons (WCCs) are usually recycled and reused to produce new corrugated cartons, and their properties are decreased dramatically after several cycles. Therefore, recycling and converting WCCs into cellulose-based film with high value is attractive and significant. Herein, without any pretreatment, the waste old corrugated cartons were directly dissolved in ionic liquid 1-allyl-3-methylimidazolium chloride, and semitransparent cellulose-based films were successfully fabricated. It was indicated that cellulose-based films displayed better UV-shielding property and hydrophobicity than traditional cellulose films. Interestingly, the cellulose-based films regenerated from deionized water displayed higher tensile strength, elongation at break, and toughness. Their tensile strength could reach 23.16 MPa, exhibiting enormous superiority as wrapping and packaging materials to replace the petrochemical polyethylene membrane (8.95 MPa). Consequently, these renewable, biodegradable, and high-valued cellulose-based films were successfully fabricated to simultaneously realize the valorization of old corrugated cartons and supplement the petrochemical plastics.


2019 ◽  
Vol 20 (24) ◽  
pp. 6198
Author(s):  
Fang Wang ◽  
Chong Xie ◽  
Liying Qian ◽  
Beihai He ◽  
Junrong Li

Electro-actuated polymer (EAP) can change its shape or volume under the action of an external electric field and shows similar behavioral characteristics with those of biological muscles, and so it has good application prospects in aerospace, bionic robots, and other fields. The properties of cellulose-based electroactive materials are similar to ionic EAP materials, although they have higher Young’s modulus and lower energy consumption. However, cellulose-based electroactive materials have a more obvious deficiency—their actuation performance is often more significantly affected by ambient humidity due to the hygroscopicity caused by the strong hydrophilic structure of cellulose itself. Compared with cellulose, chitosan has good film-forming and water retention properties, and its compatibility with cellulose is very excellent. In this study, a chitosan/cellulose composite film doped with ionic liquid, 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac), was prepared by co-dissolution and regeneration process using [EMIM]Ac as the solvent. After that, a conductive polymer, poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT: PSS), was deposited on the surface of the resulted composite, and then a kind of cellulose-based electroactive composites were obtained. The results showed that the end bending deformation amplitude of the resulted material was increased by 2.3 times higher than that of the pure cellulose film under the same conditions, and the maximum deformation amplitude reached 7.3 mm. The tensile strength of the chitosan/cellulose composite film was 53.68% higher than that of the cellulose film, and the Young’s modulus was increased by 72.52%. Furthermore, in comparison with the pure cellulose film, the water retention of the composite film increased and the water absorption rate decreased obviously, which meant that the resistance of the material to changes in environmental humidity was greatly improved.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 500-510
Author(s):  
Xiaoguang Ying ◽  
Jieyuan He ◽  
Xiao Li

Abstract An imprinted electrospun fiber membrane was developed for the detection of volatile organic acids, which are key components of human body odor. In this study, hexanoic acid (HA) was selected as the target, polymethyl methacrylate (PMMA) was used as the substrate, and colorimetric detection of HA was achieved by a bromocresol purple (BCP) chromogenic agent. The results showed that the morphology of the fiber membrane was uniform and continuous, and it showed excellent selectivity and specificity to HA. Photographs of the color changes before and after fiber membrane adsorption were recorded by a camera and quantified by ImageJ software by the difference in gray value (ΔGray). This method is simple, intuitive, and low cost and has great potential for application in human odor analysis.


2019 ◽  
Vol 4 (3) ◽  
pp. 580-585 ◽  
Author(s):  
Bineh G. Ndefru ◽  
Bryan S. Ringstrand ◽  
Sokhna I.-Y. Diouf ◽  
Sönke Seifert ◽  
Juan H. Leal ◽  
...  

Combining bottom-up self-assembly with top-down 3D photoprinting affords a low cost approach for the introduction of nanoscale features into a build with low resolution features.


1999 ◽  
Vol 77 (19) ◽  
pp. 9 ◽  
Author(s):  
MICHAEL FREEMANTLE
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3917
Author(s):  
Jong-Dae Kim ◽  
Chan-Young Park ◽  
Yu-Seop Kim ◽  
Ji-Soo Hwang

Most existing commercial real-time polymerase chain reaction (RT-PCR) instruments are bulky because they contain expensive fluorescent detection sensors or complex optical structures. In this paper, we propose an RT-PCR system using a camera module for smartphones that is an ultra small, high-performance and low-cost sensor for fluorescence detection. The proposed system provides stable DNA amplification. A quantitative analysis of fluorescence intensity changes shows the camera’s performance compared with that of commercial instruments. Changes in the performance between the experiments and the sets were also observed based on the threshold cycle values in a commercial RT-PCR system. The overall difference in the measured threshold cycles between the commercial system and the proposed camera was only 0.76 cycles, verifying the performance of the proposed system. The set calibration even reduced the difference to 0.41 cycles, which was less than the experimental variation in the commercial system, and there was no difference in performance.


2021 ◽  
Author(s):  
Xinyu Lu ◽  
Han Que ◽  
Haoquan Guo ◽  
Chenrong Ding ◽  
Xu Liu ◽  
...  

Abstract A homogeneous α-cellulose film was prepared by regeneration method from ZnCl2/CaCl2/cellulose mixed system and was further combined with sodium lignosulfonate (SLS) by crosslinking through interaction hydrogen bonds and “bridge linkages”. The physicochemical and antibacterial performance of films were all investigated and results showed that modified films exhibited stronger tensile strength, higher thermal stability, lower hydrophilic effect, better UV shielding as compared with those of pure cellulose film, and especially, better antibacterial ability derived from the presence of phenolic and sulfonate groups in SLS. This study proposed a simple and sustainable method for fabricating a multifunctional and environmentally friendly composite film by using two main lignocellulose resources as raw materials.


Sign in / Sign up

Export Citation Format

Share Document