scholarly journals Quantitative Analysis of Fluorescence Detection Using a Smartphone Camera for a PCR Chip

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3917
Author(s):  
Jong-Dae Kim ◽  
Chan-Young Park ◽  
Yu-Seop Kim ◽  
Ji-Soo Hwang

Most existing commercial real-time polymerase chain reaction (RT-PCR) instruments are bulky because they contain expensive fluorescent detection sensors or complex optical structures. In this paper, we propose an RT-PCR system using a camera module for smartphones that is an ultra small, high-performance and low-cost sensor for fluorescence detection. The proposed system provides stable DNA amplification. A quantitative analysis of fluorescence intensity changes shows the camera’s performance compared with that of commercial instruments. Changes in the performance between the experiments and the sets were also observed based on the threshold cycle values in a commercial RT-PCR system. The overall difference in the measured threshold cycles between the commercial system and the proposed camera was only 0.76 cycles, verifying the performance of the proposed system. The set calibration even reduced the difference to 0.41 cycles, which was less than the experimental variation in the commercial system, and there was no difference in performance.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7013
Author(s):  
Seul-Bit-Na Koo ◽  
Hyeon-Gyu Chi ◽  
Jong-Dae Kim ◽  
Yu-Seop Kim ◽  
Ji-Sung Park ◽  
...  

The polymerase chain reaction is an important technique in biological research because it tests for diseases with a small amount of DNA. However, this process is time consuming and can lead to sample contamination. Recently, real-time PCR techniques have emerged which make it possible to monitor the amplification process for each cycle in real time. Existing camera-based systems that measure fluorescence after DNA amplification simultaneously process fluorescence excitation and emission for dozens of tubes. Therefore, there is a limit to the size, cost, and assembly of the optical element. In recent years, imaging devices for high-performance, open platforms have benefitted from significant innovations. In this paper, we propose a fluorescence detector for real-time PCR devices using an open platform camera. This system can reduce the cost, and can be miniaturized. To simplify the optical system, four low-cost, compact cameras were used. In addition, the field of view of the entire tube was minimized by dividing it into quadrants. An effective image processing method was used to compensate for the reduction in the signal-to-noise ratio. Using a reference fluorescence material, it was confirmed that the proposed system enables stable fluorescence detection according to the amount of DNA.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 641 ◽  
Author(s):  
Ya Li ◽  
Hui Yang ◽  
Heyun Lin ◽  
Shuhua Fang ◽  
Weijia Wang

This paper proposes a novel magnet-axis-shifted hybrid permanent magnet (MAS-HPM) machine, which features an asymmetrical magnet arrangement, i.e., low-cost ferrite and high-performance NdFeB magnets, are placed in the two sides of a “▽”-shaped rotor pole. The proposed magnet-axis-shift (MAS) effect can effectively reduce the difference between the optimum current angles for maximizing permanent magnet (PM) and reluctance torques, and hence the torque capability of the machine can be further improved. The topology and operating principle of the proposed MAS-HPM machine are introduced and are compared with the BMW i3 interior permanent magnet (IPM) machine as a benchmark. The electromagnetic characteristics of the two machines are investigated and compared by finite element analysis (FEA), which confirms the effectiveness of the proposed MAS design concept for torque improvement.


2021 ◽  
Vol 14 (3) ◽  
Author(s):  
Daria Ivanchenko ◽  
Katharina Rifai ◽  
Ziad M. Hafed ◽  
Frank Schaeffel

We describe a high-performance, pupil-based binocular eye tracker that approaches the performance of a well-established commercial system, but at a fraction of the cost. The eye tracker is built from standard hardware components, and its software (written in Visual C++) can be easily implemented. Because of its fast and simple linear calibration scheme, the eye tracker performs best in the central 10 degrees of the visual field. The eye tracker possesses a number of useful features: (1) automated calibration simultaneously in both eyes while subjects fixate four fixation points sequentially on a computer screen, (2) automated real-time continuous analysis of measurement noise, (3) automated blink detection, (4) and real-time analysis of pupil centration artifacts. This last feature is critical because it is known that pupil diameter changes can be erroneously registered by pupil-based trackers as a change in eye position. We evaluated the performance of our system against that of a well-established commercial system using simultaneous measurements in 10 participants. We propose our low-cost eye tracker as a promising resource for studies of binocular eye movements.


Author(s):  
Mu-Chun Wang ◽  
Zhen-Ying Hsieh ◽  
Shu-Han Chao ◽  
Chia-Hao Tu ◽  
Shuang-Yuan Chen

In order to increase the higher competition in low-power wireless network communication market, a high-performance and low-cost product is necessary to distinguish the difference with others. Through integrating the system performance with suitable L-shape impedance-match circuit assisting with some network analyzer, this target with a 2.4 GHz radio-frequency (RF) product in long-distance data transportation seems to be promisingly implemented. In short-distance data transportation, the ideal output-link transportation rate (∼ max. 54 Mb/sec) is slightly influenced by impedance mismatch between power amplifier (PA) and antenna port. However, it is tremendously reduced at long-distance condition and the transportation rate is decreased to ∼ 24 Mb/sec. Using the attenuator to attenuate the real input signal to –70dB to simulate the real signal transportation, the packet error rate (PER) is less than 10% at a physical sublayer service data unit (PSDU) length of 1000 bytes under the communication 802.11g spec. as the real transmission rate is 20 Mb/sec. If the impedance of the transmission line is shifted, the long-distance transportation rate will be reduced to, almost, 20 × 24 / 54 = 8.8 Mb/sec. The transportation performance is greatly deducted. With the delicate design and the feasible component arrangement, the impedance mismatch influencing the long-distance (∼ 100 m) data transportation is overcome and reduced to the acceptable range. In this investigation using 3.3 V power supply, we observe that the selection of electronic components with miniaturization is also an art to reduce the radiation side-effect.


Author(s):  
Ragavanantham Shanmugam ◽  
Umayakumar Vellaisamy ◽  
Karthikeyan Balasubramaniam ◽  
Sathishkumar Mani

In hot summer, the sun rays strike the roof surface and heat up the enclosed attic. Passive vents (Soffit or Gable) allow some circulation of fresh air. Presently, in India, passive Whirlybird is predominantly used for ventilation purposes, which spins and sucks up the warm air and forces it out upwards through the vent on the roof. Since it depends mainly on the natural wind velocity, it’s efficiency to cost ratio is very low. Also, the accumulation of dust particles has a deleterious effect on the performance and life of the unit. Hence, in this work, a roof top solar ventilator has been designed and developed at low cost to address the above-mentioned problems. This unit has a high-performance brushless DC motor, an adjustable solar panel to achieve optimal solar exposure and it blends seamlessly into roof. The solar panel powers the fan through the motor, thereby increasing the air circulation through the vent. This increased air circulation provides the required pressure to force the hot air out from the attic. During hot summer, the difference in temperature between the floor and the ceiling can reach 10–15 °C, leading to a constant heat pile up in the attic and this system can limit the temperature of the attic to 40°C. In winter season, moist air present inside the house warms up, rises and collides with the cold air entering through the roof. This provides a mixed circulation that prevents the cold air from entering the roof and also reduces freezing of snow on the roof surface. Further, it keeps the inside space cooler and drier. Since this ventilator operates on renewable energy source, it is a simple and feasible solution that is environmentally friendly at low-cost. This provides healthy, energy efficient homes and work spaces as it reduces the usage of air conditions and heaters. A comparative study on the performance, life and cost of both the existing and the newly developed ventilators has been made and the same is reported.


Sign in / Sign up

Export Citation Format

Share Document