scholarly journals Novel Tough and Transparent Ultra-Extensible Nanocomposite Elastomers Based on Poly(2-methoxyethylacrylate) and Their Switching between Plasto-Elasticity and Viscoelasticity

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4254
Author(s):  
Katarzyna Byś ◽  
Beata Strachota ◽  
Adam Strachota ◽  
Ewa Pavlova ◽  
Miloš Steinhart ◽  
...  

Novel stiff, tough, highly transparent and ultra-extensible self-assembled nanocomposite elastomers based on poly(2-methoxyethylacrylate) (polyMEA) were synthesized. The materials are physically crosslinked by small in-situ-formed silica nanospheres, sized 3–5 nm, which proved to be a very efficient macro-crosslinker in the self-assembled network architecture. Very high values of yield stress (2.3 MPa), tensile strength (3.0 MPa), and modulus (typically 10 MPa), were achieved in combination with ultra-extensibility: the stiffest sample was breaking at 1610% of elongation. Related nanocomposites doubly filled with nano-silica and clay nano-platelets were also prepared, which displayed interesting synergy effects of the fillers at some compositions. All the nanocomposites exhibit ‘plasto-elastic’ tensile behaviour in the ‘as prepared’ state: they display considerable energy absorption (and also ‘necking’ like plastics), but at the same time a large but not complete (50%) retraction of deformation. However, after the first large tensile deformation, the materials irreversibly switch to ‘real elastomeric’ tensile behaviour (with some creep). The initial ‘plasto-elastic’ stretching thus causes an internal rearrangement. The studied materials, which additionally are valuable due to their high transparency, could be of application interest as advanced structural materials in soft robotics, in implant technology, or in regenerative medicine. The presented study focuses on structure-property relationships, and on their effects on physical properties, especially on the complex tensile, elastic and viscoelastic behaviour of the polyMEA nanocomposites.

1998 ◽  
Vol 18 (1-2) ◽  
pp. 17-30 ◽  
Author(s):  
D.S. Lee ◽  
J.K. Doo ◽  
B. Kim ◽  
J. Kim

Abstract Structure-property relationships of poly(butylene terephthalate) (PBT) / polyolefin (PO) (80/20) blends modified by a reactive compatibilizer, ethylene-acrylic ester-glycidyl methacrylate terpolymer (BAG), were investigated as part of studies on toughening of PBT. POs used for the study were ethylene propylene rubber (EPR), low-density polyethylene (LDPE), and high-density polyethylene (HDPE), whose deformabilities were different at room temperature. It was observed that the particle size of PO in the discrete phase was the smallest when the EAG content was 8~12 wL%. Shear viscosity of the blends increased as the particle size was decreased. It seems that the morphology and rheological properties of the blends were affected by graft copolymers formed in situ from EAG and PBT during melt mixing. Brittle-tough transition of impact strength of the PBT/EPR/EAG blends was observed when the EAG content was increased from 0 to 4 wt% at room temperature. However, blends of PBT/LDPE/EAG and PBT/HDPE/EAG showed brittle-tough transition with increasing the EAG content from 8 wt% to 12 wt%. It is postulated that toughening of the PBT depends on the deformability of the discrete PO particle as well as its size.


2015 ◽  
Vol 177 ◽  
pp. 249-262 ◽  
Author(s):  
Z. Y. Tian ◽  
H. Vieker ◽  
P. Mountapmbeme Kouotou ◽  
A. Beyer

In situ emission and absorption FTIR methods were employed to characterize the spatially resolved structure of binary Co–Cu oxides for low-temperature oxidation of CO and propene. Co–Cu oxide catalysts were controllably synthesized by pulsed-spray evaporation chemical vapor deposition. XRD, FTIR, XPS, UV-vis and helium ion microscopy (HIM) were employed to characterize the as-prepared thin films in terms of structure, composition, optical and thermal properties as well as morphology. In situ emission FTIR spectroscopy indicates that Co3O4, CuCo2O4 and CuO are thermally stable at 650, 655 and 450 °C, respectively. The catalytic tests with absorption FTIR display that the involvement of Co–Cu oxides can initiate CO and C3H6 oxidation at lower temperatures. The results indicate that in situ emission and absorption FTIR are useful techniques to explore the thermal properties and catalytic performance of functional materials, allowing many potential applications in tailoring their temporally and spatially resolved structure-property relationships.


Soft Matter ◽  
2014 ◽  
Vol 10 (27) ◽  
pp. 4990-5002 ◽  
Author(s):  
Alina K. Higham ◽  
Christopher A. Bonino ◽  
Srinivasa R. Raghavan ◽  
Saad A. Khan

In siturheological techniques are used to characterize and investigate the structure–property relationships for a two-step photoinitiated alginate crosslinking system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prajith Pillai ◽  
Parama Pal ◽  
Rinu Chacko ◽  
Deepak Jain ◽  
Beena Rai

AbstractWe report a neural network model for predicting the electromagnetic response of mesoscale metamaterials as well as generate design parameters for a desired spectral behavior. Our approach entails treating spectral data as time-varying sequences and the inverse problem as a single-input multiple output model, thereby compelling the network architecture to learn the geometry of the metamaterial designs from the spectral data in lieu of abstract features.


2011 ◽  
Vol 44 (6) ◽  
pp. 1297-1299 ◽  
Author(s):  
Brian R. Pauw ◽  
Martin E. Vigild ◽  
Kell Mortensen ◽  
Jens W. Andreasen ◽  
Enno A. Klop

Determining the effects of stress on the internal structure of high-performance fibres may provide insight into their structure–property relationships. The deformation of voids inside a poly(p-phenylene terephthalamide) (PPTA) fibre upon application of stress is one such effect which may be observed usingin situsmall-angle X-ray scattering. For this purpose, a compact in-vacuum stretching device is described here, capable of applying a force of up to 500 N using specially designed fibre clamps. Furthermore, a small radiative heater is placed around the fibre at the measurement position, so that the effects of the application of heat during tensile load can also be determined. Initial results show a slight but significant effect of stress and heating on the internal void structure of PPTA fibres. The effects on the void structure of heating and stress appear to be markedly different.


Sign in / Sign up

Export Citation Format

Share Document