scholarly journals Measuring Efficiency of Generating Electric Processes

Processes ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 6 ◽  
Author(s):  
Chia-Nan Wang ◽  
Quoc-Chien Luu ◽  
Thi-Kim-Lien Nguyen

Electric energy sources are the foundation for supporting for the industrialization and modernization; however, the processes of electricity generation increase CO2 emissions. This study integrates the Holt–Winters model in number cruncher statistical system (NCSS) to estimate the forecasting data and the undesirable model in data envelopment analysis (DEA) to calculate the efficiency of electricity production in 14 countries all over the world from past to future. The Holt–Winters model is utilized to estimate the future; then, the actual and forecasting data are applied into the undesirable model to compute the performance. From the principle of an undesirable model, the study determines the input and output factors as follows nonrenewable and renewable fuels (inputs), electricity generation (desirable output), and CO2 emissions (undesirable output). The empirical results exhibit efficient/inefficient terms over the period from 2011–2021 while converting these fuels into electricity energy and CO2 emissions. The efficiency reveals the environmental effect level from the electricity generation. The analysis scores recommend a direction for improving the inefficient terms via the principle of inputs and undesirable outputs excess and desirable outputs shortfalls in an undesirable model.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3037 ◽  
Author(s):  
Chia-Nan Wang ◽  
Quoc-Chien Luu ◽  
Thi-Kim-Lien Nguyen

Augmentation of electrical equipment is pushing for an increase in energy supply sources all over the world, as electricity consumption (EC) typically rises with growing populations. The value of EC reveals economic development and degree of emissions. Therefore, this research uses the undesirable outputs model in data envelopment analysis (DEA) for estimating relative efficiency of electricity consumption in 42 countries from 2008 to 2017. According to the principle of an undesirable outputs model and studied objectives, variables are selected that included population and EC as inputs, gross domestic product (GDP) as desirable output, and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) as undesirable outputs. The empirical results indicate that 420 terms of 42 countries during the period of 2008–2017 have 102 efficient and 310 inefficient terms. Moreover, the interplay level between input and output factors every year is presented via scores. The study suggests the effect of EC to human life and propounds the emission status to look for directions to overcome inefficient terms.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3088
Author(s):  
Henry Wasajja ◽  
Saqr A. A. Al-Muraisy ◽  
Antonella L. Piaggio ◽  
Pamela Ceron-Chafla ◽  
Purushothaman Vellayani Aravind ◽  
...  

Small-scale electrical power generation (<100 kW) from biogas plants to provide off-grid electricity is of growing interest. Currently, gas engines are used to meet this demand. Alternatively, more efficient small-scale solid oxide fuel cells (SOFCs) can be used to enhance electricity generation from small-scale biogas plants. Most electricity generators require a constant gas supply and high gas quality in terms of absence of impurities like H2S. Therefore, to efficiently use the biogas from existing decentralized anaerobic digesters for electricity production, higher quality and stable biogas flow must be guaranteed. The installation of a biogas upgrading and buffer system could be considered; however, the cost implication could be high at a small scale as compared to locally available alternatives such as co-digestion and improved digester operation. Therefore, this study initially describes relevant literature related to feedstock pre-treatment, co-digestion and user operational practices of small-scale digesters, which theoretically could lead to major improvements of anaerobic digestion process efficiency. The theoretical preamble is then coupled to the results of a field study, which demonstrated that many locally available resources and user practices constitute frugal innovations with potential to improve biogas quality and digester performance in off-grid settings.


Author(s):  
Zakiah Radhi Alhajji, Mohamed Elsayed Hafez Ali Zakiah Radhi Alhajji, Mohamed Elsayed Hafez Ali

Because of increased demand for electrical energy in the Kingdom of Saudi Arabia, which has resulted in an increase in carbon dioxide emissions, the electricity system in the Kingdom of Saudi Arabia is the largest in the Gulf region and the Arab world, with approximately 61.7 gigatons (GW) of peak demand and 89.2 gigatons (GW) of available capacity in 2018 of electricity power. It has grown rapidly over more than 20 years and has almost doubled in size since 2000. Where we observe that the total carbon dioxide emissions in the Kingdom of Saudi Arabia from 1990 to 2020; where shows rapid growth in emissions of carbon dioxide and greenhouse gases, as it was found that CO2 emissions in 1990 amounted to 151 million metric tons compared to 2011 when it reached about 435 million metric tons, and the increase continued until 2020 when it reached about 530 million metric tons. The comprehensive study relied on time series analysis to carefully analyze the electric energy productivity rate from fossil fuels and the significant amount of carbon dioxide emissions typically resulting from promptly burning fossil fuels to naturally produce electric energy. Therefore, the Kingdom of Saudi Arabia, through Vision 2030 and the Paris Agreement on Climate Change, looks to reduce the rate of carbon dioxide emissions in the field of electric power generation by diversifying the fuels used or replacing them with clean and renewable energy such as solar and wind energy.


2016 ◽  
Author(s):  
Yuli Shan ◽  
Dabo Guan ◽  
Jianghua Liu ◽  
Zhu Liu ◽  
Jingru Liu ◽  
...  

Abstract. China is the world's largest energy consumer and CO2 emitter. Cities contribute 85 % of the total CO2 emissions in China and thus are considered the key areas for implementing policies designed for climate change adaption and CO2 emission mitigation. However, understanding the CO2 emission status of Chinese cities remains a challenge, mainly owing to the lack of systematic statistics and poor data quality. This study presents a method for constructing a CO2 emissions inventory for Chinese cities in terms of the definition provided by the IPCC territorial emission accounting approach. We apply this method to compile CO2 emissions inventories for 20 Chinese cities. Each inventory covers 47 socioeconomic sectors, 20 energy types and 9 primary industry products. We find that cities are large emissions sources because of their intensive industrial activities, such as electricity generation, production for cement and other construction materials. Additionally, coal and its related products are the primary energy source to power Chinese cities, providing an average of 70 % of the total CO2 emissions. Understanding the emissions sources in Chinese cities using a concrete and consistent methodology is the basis for implementing any climate policy and goal.


2016 ◽  
Vol 37 (3) ◽  
pp. 79-93 ◽  
Author(s):  
Jan Wajs ◽  
Dariusz Mikielewicz ◽  
Michał Bajor ◽  
Zbigniew Kneba

AbstractThe results of investigations conducted on the prototype of vapour driven micro-CHP unit integrated with a gas boiler are presented. The system enables cogeneration of heat and electric energy to cover the energy demand of a household. The idea of such system is to produce electricity for own demand or for selling it to the electric grid – in such situation the system user will became the prosumer. A typical commercial gas boiler, additionally equipped with an organic Rankine cycle (ORC) module based on environmentally acceptable working fluid can be regarded as future generation unit. In the paper the prototype of innovative domestic cogenerative ORC system, consisting of a conventional gas boiler and a small size axial vapour microturbines (in-house designed for ORC and the commercially available for Rankine cycle (RC)), evaporator and condenser were scrutinised. In the course of study the fluid working temperatures, rates of heat, electricity generation and efficiency of the whole system were obtained. The tested system could produce electricity in the amount of 1 kWe. Some preliminary tests were started with water as working fluid and the results for that case are also presented. The investigations showed that domestic gas boiler was able to provide the saturated/superheated ethanol vapour (in the ORC system) and steam (in the RC system) as working fluids.


10.19082/3266 ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 3266-3271
Author(s):  
Mohammad Meskarpour Amiri ◽  
Taha Nasiri ◽  
Seyed Hassan Saadat ◽  
Hosein Amini Anabad ◽  
Payman Mahboobi Ardakan

Author(s):  
K. A. Khan ◽  
Shahinul Islam ◽  
M. A. Saime ◽  
S. R. Rasel ◽  
Sazzad Hossain

A new method of electricity generation based on Pathor Kuchi Leaf (Genus: Kalanchoe, Section: Bryophyllum) has been developed at the Department of Physics, Jagannath University, Dhaka- 1100, Bangladesh. This electricity generation method has several advantages for smart grid over the conventional electricity production. This sustainable method is likely to generate the employment at particularly in the rural areas of where grid electricity is absent. This research work reports an invention made on Pathor Kuchi Leaf (PKL) electric power plant to enhance the PKL electricity production. The efficiency of the PKl electricity production device, Short Circuit Current ( Isc ), Open circuit Voltage ( Voc ), Temperature effect of the PKL malt, pH of the PKL malt, Titratable acidity of the PKL malt, Generation of PKL electricity, Storage system of the PKL electricity, Particular utilization of PKL electricity, I-V characteristics of the PKL, Classification of PKL, Longevity of PKL malt for PKL electricity generation, Preparation of PKL electric unit cell, module, panel, arrays and the constituent elements of the PKL, Voltage regulation, Internal resistance of the cell and efficiency of the cell have been studied. The chemical reactions of the PKL electrochemical cell have also been studied. In experimental study, it is shown that the maximum efficiency of the PKL electricity production device is ≈ 34%, the pH of the PKL malt is ≈ 4.6(without water), pH of the PKL malt is ≈ 4.8 (with 10% solution), the titratable acidity of the PKL malt is ≈ 0.88%. Most of the results have been tabulated and graphically discussed.


Sign in / Sign up

Export Citation Format

Share Document