scholarly journals Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 354 ◽  
Author(s):  
Timilehin Martins Oyinloye ◽  
Won Byong Yoon

Freeze-drying is an important processing unit operation in food powder production. It offers dehydrated products with extended shelf life and high quality. Unfortunately, food quality attributes and grinding characteristics are affected significantly during the drying process due to the glass transition temperature (during drying operation) and stress generated (during grinding operation) in the food structure. However, it has been successfully applied to several biological materials ranging from animal products to plants products owning to its specific advantages. Recently, the market demands for freeze-dried and ground food products such as spices, vegetables, and fruits are on the increase. In this study, the effect of the freeze-drying process on quality attributes, such as structural changes, the influence of glass transition during grinding, together with the effect on grinding efficiency in terms of energy requirement, grinding yield, and morphological changes in the powder as a result of temperature, drying time were discussed. An overview of models for drying kinetics for freeze-dried food sample, and grinding characteristics developed to optimize the drying processes, and a prediction of the grinding characteristics are also provided. Some limitations of the drying process during grinding are also discussed together with innovative methods to improve the drying and grinding processes.

2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Tim Wenzel ◽  
Henning Gieseler

AbstractCurrent trends in the pharmaceutical industry led to a demand for more flexible manufacturing processes with smaller batch sizes. Prepackaged nested vials that can be processed as a unit were introduced into the market to fulfill this need. However, vial nests provide a different thermal environment for the vials compared to a hexagonal packaging array and could therefore influence product temperature profiles, primary drying times, and product quality attributes. Polymer caps with the possibility of vial closure inside the freeze-drying chamber were developed to remove the risks and need of a crimping process. A general concern with the use of such caps is the possibility of an increase in resistance to water vapor flow out of the vial. This case study investigated the effect of the LyoSeal® and PLASCAP® polymer caps and EZ-fill® nests on the freeze-drying process. Amorphous and partially crystalline model formulations were freeze-dried. Process data and product quality attributes were compared for regularly stoppered vials and vials with polymer caps as well as vials in a hexagonal packaging array and nested vials. The results indicated no increased resistance or impeded water vapor flow by the polymer caps. Differences in the macro- and microscopic appearances of products and a trend towards lower product temperatures were observed for the investigated nest type compared to a regular hexagonal packaging array. Consequently, the polymer caps could be used as an alternative to regular stoppers without affecting freeze-drying process data or product quality attributes, while the different thermal environment of nested vials should be considered.


2013 ◽  
Vol 17 (2) ◽  
pp. 3-14 ◽  
Author(s):  
Tamás Antal ◽  
László Sikolya ◽  
Benedek Kerekes

Abstract The effect of freezing rate on the quality of dried Jonagold and Idared was studied. Apple slices underwent various pre-treatments, i.e. freezing in household freezer (freezing rate: 0,5 °C/min), contact plate freezing (2 °C/min) and vacuum-freezing (3 °C/min). The quality of the freeze dried product was then evaluated in terms of water activity, hardness, color and rehydration. The freezing in household freezer (slow freezing rate) significantly reduces the duration of the freeze drying process and consequently the process costs. The slow freezing rate allows the growth of large ice crystals at the beginning of the freeze-drying process, this fact should consequently lead to larger pores and injured cell walls and thus to shorter freeze drying time. Quality of the freezing in household freezer product was assessed as higher than the quality of the other freezing pre-treated material. Slow freezing rate resulted softer texture and higher rehydration capacity, than that of other pre-treated samples. In all cases, slow freezing lead to lower final moisture content, total color difference and water activity.


2013 ◽  
Vol 5 (1) ◽  
pp. 56-68
Author(s):  
Tamás Antal ◽  
László Sikolya ◽  
Benedek Kerekes

Abstract The effect of freezing rate on the quality of dried Jonagold and Idared (Malus domestica Borkh.) was studied. Apple slices underwent various pre-treatments, i.e. freezing in household freezer (freezing speed/rate: 0,5◦C/min), contact plate freezing (2◦C/min) and vacuumfreezing (3◦C/min). The quality of the freeze-dried product was then evaluated in terms of water activity (aw), hardness, color and rehydration. The texture and color experiments were carried out with texture analyser and colorimeter. The aw of apple slices was measured by aw apparatus. It was found that drying time was influenced by freezing rate. The freezing in household freezer (slow freezing rate) significantly reduces the duration of the freeze-drying process and consequently the process costs. The slow freezing rate allows the growth of large ice crystals at the beginning of the freeze-drying process; this fact should consequently lead to larger pores and injured cell walls and thus to shorter freeze-drying time. Quality of the freezing in household freezer product was assessed as higher than the quality of the other freezing pre-treated material. Slow freezing rate resulted softer texture and higher rehydration capacity than that of other pre-treated samples. In all cases, slow freezing speed lead to lower final moisture content, total color difference and water activity. Freeze-dried samples prepared with higher freezing rates (3◦C/min) were the most white in color because small pores, originated by sublimation of small ice crystals formed by fast freezing.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lijuan Zhao ◽  
Yonghuan Li ◽  
Hui Xie ◽  
Jianliang Zhang ◽  
Zhonghua Wu

Abstract A pilot-scale vacuum dryer with visualization system was used to study the drying characteristics of the whole blueberry pulp. The heating temperature, operating pressure and initial material thickness had significant effects on the drying characteristics and the retentions of total monomeric anthocyanins and vitamin C in dried blueberry powder (P < 0.05). According the heat transfer mode inside the material, the whole drying process could be divided into three periods: the boiling drying period, the convective drying period, and the conductive drying period. Most of water in the material was evaporated in the boiling and convective drying period. Considering the drying characteristics and dried product quality comprehensively, an optimal drying condition for whole blueberry pulp were: heating temperature 70 °C, operating pressure 1 kPa, and the initial material thickness 5 mm. It further compared the drying time, nutrients retention, hygroscopicity and microstructure of the product obtained by vacuum and vacuum freeze drying. The drying time of vacuum drying (1.2 h) was much shorter than that of vacuum freeze drying (44 h); the retentions of the total monomeric anthocyanins and vitamin C in dried blueberry powder of vacuum drying (67.9, 46.7%) were lower than that of vacuum freeze drying (79.0, 85.8%); while the hygroscopicity of vacuum dried powder was less than that of the freeze-dried product. The SEM images displayed that the surface of the vacuum-dried blueberry powder was porous, and the vacuum freeze-dried product was lamellar.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 226
Author(s):  
Katarzyna Rybak ◽  
Artur Wiktor ◽  
Dorota Witrowa-Rajchert ◽  
Oleksii Parniakov ◽  
Małgorzata Nowacka

It has been demonstrated previously in the literature that utilization of PEF or a combination of a pulsed electric field (PEF) and ultrasounds (US) can facilitate dehydration processes and improve the quality of dried products even better than the application of thermal methods such as blanching. The aim of the study was to evaluate the quality of red bell pepper subjected to freeze-drying preceded by blanching or PEF or US treatment applied in a single and combined mode. Furthermore, the freeze-drying was preceded by shock freezing or vacuum freezing performed inside the freeze-dryer as a result of pressure drop during the first stage of freeze-drying. All of the analyzed technological variants enhanced the drying kinetics when compared to the intact material. Freeze-dried bell pepper subjected to non-thermal pretreatment exhibited higher vitamin C, total phenolic and carotenoids content than blanched material despite the fact that blanching reduced drying time the most compared to all other analyzed methods.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 839
Author(s):  
Karina Jasińska ◽  
Bartłomiej Zieniuk ◽  
Dorota Nowak ◽  
Agata Fabiszewska

The study aimed to evaluate the impact of selected factors of the freeze-drying process on the hydrolytic and synthetic activity of the extracellular lipases of Y. lipolytica KKP 379 and to attempt the use of the crude enzyme preparation as a biocatalyst in the synthesis of geranyl 4-hydroxyphenylpropanoate. Antioxidant and antibacterial properties of the geranyl ester derivative were also investigated in order to evaluate their usefulness as a novel food additive. The studies confirmed that freeze-drying was an effective method of dehydrating yeast supernatant and allowed for obtaining lyophilizates with low water activity from 0.055 to 0.160. The type and concentration of the additive (2–6% whey protein hydrolyzate, 0.5% and 1% ammonium sulphate) had a significant effect on the hydrolytic activity of enzyme preparations, while the selected variants of drying temperature during the freeze-drying process were not significant (10 °C and 50 °C). Low yield of geranyl 4-hydroxyphenylopropionate was shown when the lyophilized supernatant was used (5.3%), but the yield of ester synthesis increased when the freeze-dried Y. lipolytica yeast biomass was applied (47.9%). The study confirmed the antioxidant properties of the synthesized ester by the DPPH• and CUPRAC methods, as well as higher antibacterial activity against tested bacteria than its precursor with 0.125 mM MIC (minimal inhibitory concentration) against L. monocytogenes.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hai-ou Wang ◽  
Qing-quan Fu ◽  
Shou-jiang Chen ◽  
Zhi-chao Hu ◽  
Huan-xiong Xie

The effect of hot-water blanching (HWB) on drying characteristics and product qualities of dried apple slices with the novel integrated freeze-drying (NIFD) process was investigated by comparing with 3 different FD methods. Compared with the NIFD process without HWB pretreatment (VF-FD), the NIFD process with HWB pretreatment (HWB-VF-FD) resulted in a significantly higher mass loss and more sufficient freezing in vacuum-frozen samples, significantly higher rehydration ratio (RR), higher shrinkage ratio (SR), smaller Vitamin C (VC) content and lower hardness and better apparent shape in freeze-dried samples, and fewer change to the color of the dried or rehydrated samples (p<0.05). Compared with the conventional FD process with HWB pretreatment (HWB-PF-FD), HWB-VF-FD cost significantly less processing time and FD time and obtained significantly higher RR (p<0.05), almost the equivalent SR, VC content, and hardness, and similar appearance in dried samples. The microstructure of apple cell tissues was analyzed by transmission electron microscopy and scanning electron microscopy to interpret the above differences in drying characteristics and product qualities. The results suggested that the NIFD process of apple slices with HWB pretreatment was a promising alternative method to decrease drying time, achieve similar product quality, and simplify the process steps of the conventional FD technology.


Author(s):  
Niladri Chakraborty ◽  
Rajat Chakraborty ◽  
Asit Kumar Saha

Abstract Kiwi fruit (Actinidia deliciosa) (KF) is one of the best fruits available due to its large amount of nutrients. Despite its many health benefits, there are no previous reports on its preparation in other readily ingestible forms. The objective of the present study was to make a new food product from KF. The KF pulp was fortified and blended with several raw materials (such as rice flour and oat flour) using a stepwise short time addition and mixing methodology since this avoids unwanted biochemical and chemical reactions. The blended and reduced moisture KF paste was freeze-dried on a round silver coated steel plate (RSCSP), supplying the heat of sublimation using a newly designed cubic heater. The freeze-drying (FD) time was 4.5 h and the drying kinetics were studied using four established models. The effective moisture diffusivity (Deff) during FD (at 50 °C) was 1.532 x 10-6 m2/s and the activation energy (E) estimated for the FD was 28.35 kJ/mol. The freeze-dried sample was ground and placed under vacuum to reduce the weathering effects. The quality of the stored product was evaluated using the proximate analysis, physicochemical analysis and a sensory evaluation using a hedonic scale. The raw, fresh KF had a moisture content of 85.07% and the final freeze-dried product one of 3%. The carbohydrate, total sugar, protein, fat, total ash, crude fibre and vitamin C contents of the final product increased by 563%, 400%, 355%, 386%, 672%, 106%, and 117% respectively. Of the 66 panelists, the % consumer acceptances for the different attributes were: sweetness (68.18%), sourness (90.91%), saltiness (100%), bitterness (100%), flavour (95.45%), texture (77.27%) and overall acceptability (81.82%). Using conventional freeze-drying (CFD) for blended KF pulp without fortification, with the same RSCSP and the same cubic heater for sublimation, the drying time was found to be 7 h to reach the same final moisture content of 3%.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Matthew A. Achaglinkame ◽  
Eric Owusu-Mensah ◽  
Abena A. Boakye ◽  
Ibok Oduro

Snails, a delicacy in most tropical communities, are highly perishable and seasonal. Employed preservative methods are highly temperature dependent, adversely affecting their nutritional value and sensory properties. This study was aimed at determining the effect of size and drying time on the rehydration and sensory properties of freeze-dried snails. Snails were sized into three categories with average weights: 7.59 g (quarter-sized), 14.41 g (half-sized), and 30.71 g (whole), and freeze-dried for 15, 20, and 25 h. The moisture content and percent rehydration of the dried samples were determined by standard methods and sensory properties assessed by an in-house panel of 30 using a 5-point hedonic scale. The moisture content of the fresh and freeze-dried samples ranged from 65.80 to 75.20% and 3.25 to 10.24%, respectively. Freeze-dried samples had higher percent rehydration (27 to 102%) than the control; smoked snails (21 to 32%). Size had a significant (P<0.05) effect on the rehydration ability of the samples with the half-sized and freeze-dried for 15 h samples having the highest. The freeze-dried samples generally had higher consumer preference than the control in all attributes assessed. The findings show that freeze-drying snails (approximate weight of 14.4 g) for 15 h could be a consumer-preferred alternative preservative method for extending the shelf life of snails.


Sign in / Sign up

Export Citation Format

Share Document