scholarly journals Low-Carbon Composite Based on MOC, Silica Sand and Ground Porcelain Insulator Waste

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 829 ◽  
Author(s):  
Adam Pivák ◽  
Milena Pavlíková ◽  
Martina Záleská ◽  
Michal Lojka ◽  
Anna-Marie Lauermannová ◽  
...  

Magnesium oxychloride cement-based composites (MOC) with silica sand/porcelain waste blended fillers were designed and tested. The objective of the presented research was to design and test low carbon, eco-friendly and viable alternatives to Portland cement-based materials. To make new materials environmentally acceptable and sustainable, silica sand applied in the reference composite material was partially substituted by ground porcelain waste (PW) coming from used electrical insulators. The sand substitution ratio was 5, 10, and 15 vol.%. The chemical and mineralogical composition, morphology, and particle size distribution of porcelain waste were measured. For silica sand, porcelain waste, and MgO, specific density, loose bulk density, and Blaine fineness were determined. The effect of porcelain waste on the workability of fresh composite mixtures was characterized by spread diameter. The composites were characterized by their basic structural, mechanical, hygric, and thermal properties. The phase composition and thermal stability at high temperatures of MOC/porcelain waste pastes were also analyzed. Fourier-transform infrared spectroscopy (FT-IR) analysis helped to indicate main compounds formed within the precipitation of MOC phases and their reaction with porcelain waste. The usage of porcelain waste greatly decreased the porosity of composite matrix, which resulted in high mechanical resistance and reduced and decelerated water imbibition. The 10% sand substitution with porcelain waste brought the best mechanical resistance and the lowest water absorption due to the formation of amorphous phases, water-insoluble aluminosilicates. In case of the thermal performance of the examined composites, the low thermal conductivity of porcelain waste was the contradictory parameter to porosity and the high thermal stability of the phases present in porcelain slightly decreased the thermal decomposition of composites with porcelain waste dosage. Based on the results emerged from the experimental tests it was concluded that the partial substitution of silica sand in MOC composites enabled the development of materials possessing interesting and advanced function and technical parameters.

2019 ◽  
Vol 22 ◽  
pp. 83-87
Author(s):  
Jaroslav Pokorný ◽  
Milena Pavlíková ◽  
Zbyšek Pavlík

Lime-based renders are common part of historical or older buildings that don’t always provide a comfortable inside climate due to the problems with high thermal losses. Thermal insulation renders may possibly retrofit or replace original render layers and mitigate negative impacts of harmful external climate. In this respect, determination of basic structural, mechanical and thermal properties of lime-based renders containing various amount of perlite that was used as partial silica sand replacement is presented in the paper. Experimental tests performed for 28 days high relative humidity-cured samples showed significant decrease in bulk density and apparent density for renders with incorporated perlite compared to reference render mix composed of silica sand-based aggregate only. Accordingly, porosity of perlite mortars was significantly higher, what led to the lower thermal conductivity values in comparison with reference render. Although the mechanical resistance of perlite-modified renders was lower than that of reference material, it was still sufficient for their use as thermal insulation layer compatible with older construction materials. Based on the obtained data it can be concluded, the analysed hydrated lime-based plasters with perlite admixture can be considered as promising materials for buildings refurbishment.


2010 ◽  
Vol 426-427 ◽  
pp. 432-435
Author(s):  
De Gong Chang ◽  
J. Zhang ◽  
M.L. Lv

The larger variation of the construction and performance of the low-carbon steel joints was caused by the high temperature of the puddle welding of the joint. Therefore, the braze welding rather than the puddle welding was applied to the welding production of low-carbon steel. The 08 steel parts were joined in a furnace using pure copper solder paste as brazing filler metal. According to the obtained results, the ideal technical parameters are as follow: brazing temperature: 1100-1150°C; holding time: 5-10min; joint clearance: 0.03-0.05mm.


2015 ◽  
Vol 22 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Chao Sun ◽  
Shan-wu Yang ◽  
Rui Zhang ◽  
Xian Wang ◽  
Hui Guo

2021 ◽  
Author(s):  
imane baba ◽  
Mounsif Ibnoussina ◽  
Omar Witam ◽  
Latifa Saadi

<p>Over the last few decades, the construction industry has become interested in materials that are durable, environmentally friendly and easily recyclable. This interest is due to the advantages these materials offer, among others local availability, low carbon footprint, energy efficiency and indoor comfort. The objective of this work is to study the properties of plasters prepared from a mixture of two types of gypsum. We were interested in the evolution of thermal conductivity, mechanical resistance and setting time as a function of the percentage of addition.</p><p>Two types of gypsum were studied, the first one belongs to the Safi basin and the second one comes from the High Atlas of Marrakech.</p><p>The characterization of the gypsums was necessary to determine its physical and geotechnical properties, its mineralogy, its thermal behavior and its microscopic structure. Several analyses were developed such as density measurement by pycnometer, X-ray diffraction, infrared spectroscopy and scanning electron microscopy.</p><p>We have made samples, of standardized dimensions, of mixtures based on both types of plaster. The water/gypsum mass ratio was set at 0.75.</p><p>The results revealed that the properties of gypsum as well as the percentage of addition affect the mechanical and thermal properties and the setting time of the composite material. The addition of the High Atlas gypsum of Marrakech allowed improving the material in terms of thermal insulation. The results of the other tests will be communicated later.</p>


2018 ◽  
Vol 41 ◽  
pp. 01042
Author(s):  
Vasilii Murko ◽  
Veniamin Khyamyalyainen ◽  
Marina Baranova

Effective utilization of ash-and-slag waste generated by coalfired power plants can help significantly to reduce the negative impact on the environment and improve their economic performance. Studies have been made of the mineralogical composition of ash-and-slag wastes obtained after the combustion of water-coal fuel based on fine-dispersed coal-washing waste (filter cake) in a specially designed boiler with a vortex combustion system. The possibility of effective use of ash-and-slag wastes for the production of building materials, primarily mortar mixes, widely used for mining works on mine openings, laying the worked out space, etc. (high content of silicon oxide and aluminum oxide is combined with a low carbon content in other words a negligible unburned carbon loss). The optimum percentage ratio of the initial components of the filling mixture based on ash-and-slag wastes and crushed rock (granulated slag) has been established. The results of experimental tests of hardening tabs on the strength under uniaxial compression are presented. It has been established that a sample containing 18% of ash-and-slag wastes, 33% of a granulated slag and 19% of cement, corresponds to the required technological parameters for the strength and cement content.


Author(s):  
Qingxiao Zhang ◽  
Qing Yuan ◽  
Zhoutou Wang ◽  
Wenwei Qiao ◽  
Guang Xu

2020 ◽  
Vol 45 (9) ◽  
pp. 7219-7230 ◽  
Author(s):  
Eny Kusrini ◽  
Muhammad Idrus Alhamid ◽  
Andikaputra Brahma Widiantoro ◽  
Nur Zafirah A. Daud ◽  
Anwar Usman

2010 ◽  
Vol 660-661 ◽  
pp. 1081-1086 ◽  
Author(s):  
Priscila Anadão ◽  
Laís Fumie Sato ◽  
Hélio Wiebeck ◽  
Francisco Rolando Valenzuela-Díaz

The addition of a fourth component in the system composed by polymer/ solvent/ non-solvent is a technique generally employed to enhance membrane properties. Since polysulfone presents low hydrophilicity, which can hamper filtration performance, the addition of a hydrophilic material can be an important technique to improve this property. Therefore, the main purpose of this work is to understand the influence of addition of the activated carbon in the system polysulfone/ NMP/ water in terms of membrane morphology, hydrophilicity, thermal and mechanical resistance. From scanning electron micrographs, it could be seen that membrane surface became denser with the addition of higher activated carbon contents and the cross-section morphology was not changed. Acid-base interactions were favored with the activated carbon addition and the availability of Lifshtiz-van Der Waals interactions was decreased, being these two properties very important to avoid fouling formation onto membrane surface. The glass transition temperatures of the polysulfone composite membranes with higher activated carbon contents were increased. However, all activated carbon contents brittled the composite membranes in relation to the pristine polysulfone membrane.


2018 ◽  
Vol 786 ◽  
pp. 319-324 ◽  
Author(s):  
Markku Kananen ◽  
Antti Järvenpää ◽  
Matias Jaskari ◽  
Kari Mäntyjärvi

Corrugated core panels contain a formed, corrugated core bonded between two skin sheets. These panels are typically used in applications, where a low weight is required with integrity in stiffness. This paper demonstrates the mechanical properties of a simple panel structure (SPS), constructed using strips of work-hardened, austenitic stainless steel (ASS) grade 1.4310 (type 301) with the yield strength (YS) of ~1200 MPa. The 0.5 mm thick strips were formed into a C-shape and subsequently laser welded together by lap joints to form a SPS. The thickness of the SPS was 50 mm. The bending tests for the SPS were carried out transverse and 45-degrees related to the orientation of the web sheet. The results showed that the SPS, as loaded in the transverse direction, has about the same bending stiffness prior yielding as that of the previously tested 6 mm thick, low carbon S355 plain steel sheets, but the SPS is three times lighter than 6mm thick plain steel sheet. Compared with a corrugated core panel made of an annealed ferritic stainless steel (SS-panel) with the YS ~ 250 MPa, the weight of the both panels are roughly the same, but the bending resistance of the SPS is 45% higher. Experimental tests also verified that the benefit in the stiffness is quickly reduced if the load direction differs from transverse. In the 45-degrees loading direction, the SPS and the SS-panel had almost the same bending strength. On the other hand, the SPS and the SS-panel stiffnesses are much better than that of the carbon steel (the YS ~ 300 MPa) panel (CS-panel) in the both loading directions – the SPS being twice as stiff as the CS-panel.


Author(s):  
Marco Gonzalez ◽  
Paulo Teixeira ◽  
Jeanette Gonzalez ◽  
Raul Machado

High density polyethylene (HDPE) is commonly used in pipe fabrication for water and natural gas systems, due to its versatility, low cost and lightweight. A piping system is subject to service conditions such as impact and cyclic loads as a consequence of internal pressure or external pressure fluctuations, and the existence of discontinuities in the material. These conditions cause material damage, cracking and weakening, and have to be considered in the piping design. The Boundary Element Method (BEM) is a numerical method based on integral equations that consider only the contour of the solid (meaning an easier meshing). Crack modeling is one of the most important applications for the BEM, since it allows an accurate stress analysis around the crack tip. In this work, a computational study based on the BEM in two dimensions whose aim is to determine the stress intensity factors (SIFs) in order to evaluate the mechanical resistance to fracture of HDPE PE100 pipes and its comparison with the results obtained by previous experimental tests, is developed. Numerical simulations of specimens subject to three point bending loads (SENB specimens) using the characteristics of the linear elastic fracture mechanic (LEFM), are developed. As a first attempt, the numerical models of different SENB geometries are validated comparing the numerical solution versus the results given by a reference solution from literature. The results show that the BEM under the LEFM approach is valid for loads within the linear range of HDPE since LEFM gives an upper bound of the fracture load of HDPE specimens; however, an Elastic-Plastic fracture analysis could be required for loads in the plastic range of the material.


Sign in / Sign up

Export Citation Format

Share Document