scholarly journals Evaluation of the Turbulence Model Influence on the Numerical Simulation of Cavitating Flow with Emphasis on Temperature Effect

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 997
Author(s):  
Yilin Deng ◽  
Jian Feng ◽  
Fulai Wan ◽  
Xi Shen ◽  
Bin Xu

The aim of this paper is to investigate the influence of different turbulence models (k−ε, RNG k−ε, and SST k−ω) on the numerical simulation of cavitating flow in thermosensitive fluid. The filter-based model and density correction method were employed to correct the turbulent viscosity of the three turbulence models. Numerical results obtained were compared to experimental ones which were conducted on the NACA0015 hydrofoil at different temperatures. The applicability of the numerical solutions of different turbulence model was studied in detail. The modified RNG k−ε model has higher accuracy in the calculation of cavitating flow at different temperatures.

2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Shan Sun ◽  
Jinju Sun ◽  
Wanyou Sun ◽  
Peng Song

Abstract Cavitating flow prediction is essential for designing cavitation-resistant hydraulic machines. Despite the advances achieved in normal-temperature cavitation prediction, cryogenic cavitation prediction has remained a challenging task in which thermal effects play a significant role. This study aims to enhance the prediction of cryogenic cavitation, and both the cavitation and turbulence models are improved simultaneously. The original cavitation model embedded in the CFX flow solver is modified by incorporating additional source terms (such as mass and heat transfer rates) for dual evaporation and condensation processes. The renormalization group k–ε turbulence model is modified on the basis of the filter-based turbulence model and density correction method to permit a smooth prediction of turbulence eddy viscosity, which mitigates the overestimation of the turbulence length scale in the cryogenic cavity (which is intrinsic to the original renormalization group k–ε turbulence model). The modified cavitation and turbulence models are implemented through CFX Expression Language (CEL) within the CFX frame. To verify the modified models and the enhancement of cryogenic cavitation prediction, Hord's liquefied nitrogen (LN2) and liquefied hydrogen (LH2) experiments over a hydrofoil and ogive are used, and cavitating flow simulation is conducted for each of the test cases. When using the modified models, the predicted temperature and pressure curves agree well with the measured values, and the predicted cavity lengths are much closer to the measured lengths. It is proven that the cryogenic cavitating flow can be well depicted by the modified models.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim ◽  
Hoon-Ki Choi

A numerical study for the evaluation of heat transfer correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor is performed. Three different types of flows such as parallel flow, cross flow, and two inclined flows are considered. Calculations are performed for these three typical flows in a heat exchanger changing turbulence models. The tested turbulence models are the shear stress transport (SST) model and the SSG-Reynolds stress turbulence model by Speziale, Sarkar, and Gaski (1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach,” J. Fluid Mech., 227, pp. 245–272). The computational model for parallel flow is a flow past tubes inside a circular cylinder and those for the cross flow and inclined flows are flows past the perpendicular and inclined tube banks enclosed by a rectangular duct. The computational results show that the SST model produces the most reliable results that can distinguish the best heat transfer correlation from other correlations for the three different flows. It was also shown that the SSG-RSTM high-Reynolds number turbulence model does not deal with the low-Prandtl number effect properly when the Peclet number is small. According to the present calculations for a parallel flow, all the old correlations do not match with the present numerical solutions and a new correlation is proposed. The correlations by Dwyer (1966, “Recent Developments in Liquid-Metal Heat Transfer,” At. Energy Rev., 4, pp. 3–92) for a cross flow and its modified correlation that takes into account of flow inclination for inclined flows work best and are accurate enough to be used for the design of the heat exchanger.


2014 ◽  
Vol 628 ◽  
pp. 270-274
Author(s):  
Yi Bin He ◽  
Qi Zhi Shen

Thebased SST (shear strain transport) turbulence model combines the advantages of and turbulence models and performs well in numerical experiment. In the paper, the SST turbulence model is applied to model vehicle overtaking process with numerical simulation technology. The change graph of drag coefficient and side force coefficient are gained. Analysis of the phenomena is presented at the end.


2012 ◽  
Vol 591-593 ◽  
pp. 1968-1972
Author(s):  
De Zhang Shen ◽  
He Zhang ◽  
Hao Jie Li

To figure out the problem of turbulence simulation of underwater ammunition fuze turbine numerical simulation, respectively, realizable k-ε turbulence model and SST k-ω turbulence model are used for two-phase flow numerical simulation of the turbine rotation. The analysis compared the calculation results of the two turbulence models. The results showed that: the cavitation scale obtained from realizable k-ε turbulence model is shorter than that of SST k-ω turbulence model; turbine surface pressure distribution trends are similar of this two model, the results of realizable k-ε turbulence model are bigger than SST k-ω turbulence model; the turbine axial pressure coefficients using realizable k-ε turbulence model are also bigger than that of SST k-ω turbulence model, and the deviation increases with the speed increase.


1997 ◽  
Vol 119 (4) ◽  
pp. 885-892 ◽  
Author(s):  
V. I. Vasiliev ◽  
D. V. Volkov ◽  
S. A. Zaitsev ◽  
D. A. Lyubimov

A one-equation model for turbulent viscosity, previously developed and tested for parabolic flows, is implemented in elliptic cases. The incompressible 2-D and axisymmetric flows in channel with back step as well as the incompressible and compressible 2-D flows in turbine blade cascades are calculated. The CFD procedures, developed for both incompressible and compressible turbulent flows simulation, are described. The results of calculations are compared with known experimental and numerical data.


2016 ◽  
Vol 819 ◽  
pp. 392-400 ◽  
Author(s):  
Ahmad Indra Siswantara ◽  
Budiarso ◽  
Steven Darmawan

Inverse-Turbulent Prandtl number (α) is an important parameter in RNG k-ε turbulence models since it affects the ratio of molecular viscosity and turbulent viscosity. In curved pipe, this highly affects the model prediction to a large range eddy-scale flow. According to Yakhot & Orzag, the α range from 1-1.3929 has not been investigated in detail in curved pipe flow (Yakhot & Orszag, 1986) and specific Re. This paper varied inverse-turbulent Prandtl number α to 1-1.3 in RNG k-ε turbulence model on cylindrical curved pipe in order to obtain the optimum value of α to predict unfully-developed flow in the curve with curve ratio R/D of 1.607. Analysis was conducted numericaly with inlet specified Re of 40900 which was generated from the experiment at α 1, 1.1, 1.2, 1.3. Wall surface roughness is not considered in this paper. With assumption that thermal diffusivity is always dominant to turbulent viscosity, higher Inverse-turbulent Prandtl number represent domination of turbulent viscosity to molecular viscosity of the flow and predict to have more interaction between large scale eddy to small scale eddy as well. The results show the use of α = 1.3 has increased the turbulent kinetic energy by 7% and the turbulent dissipation by 5% compared to general inverse-turbulent Prandtl number of 1. The value difference shows that the use of higher α on RNG turbulence model described more interaction between eddies in secondary and swirling flow at pipe curve at Re = 40900.


2020 ◽  
Vol 5 (12) ◽  
pp. 377-391
Author(s):  
Li-ren Yu ◽  
Jun Yu

This paper reports a fine numerical simulation of environmental flow and contaminant transport in the Amazonian water system near the Anamã City, Brazil, solved by the Q3drm1.0 software, developed by the Authors, which can provide the different closures of three depth-integrated two-equation turbulence models. The purpose of this simulation is to refinedly debug and test the developed software, including the mathematical model, turbulence closure models, adopted algorithms, and the developed general-purpose computational codes as well as graphical user interfaces (GUI). The three turbulence models, provided by the developed software to close non-simplified quasi three-dimensional hydrodynamic fundamental governing equations, include the traditional depth-integrated two-equation turbulence   model, the depth-integrated two-equation turbulence model, developed previously by the first Author of the paper, and the depth-integrated two-equation turbulence   model, developed recently by the Authors of this paper. The numerical simulation of this paper is to solve the corresponding discretized equations with collocated variable arrangement on the non-orthogonal body-fitted coarse and fine two-levels’ grids. With the help of Q3drm1.0 software, the steady environmental flows and transport behaviours have been numerically investigated carefully; and the processes of contaminant inpouring as well as plume development, caused by the side-discharge from a tributary of the south bank (the right bank of the river), were also simulated and discussed in detail. Although the three turbulent closure models, used in this calculation, are all applicable to the natural rivers with strong mixing, the comparison of the computational results by using the different turbulence closure models shows that the turbulence   model with larger turbulence parameter provides the possibility for improving the accuracy of the numerical computations of practical problems.


Author(s):  
Jian Wang ◽  
Yong Wang ◽  
Houlin Liu ◽  
Haoqin Huang ◽  
Linglin Jiang

Purpose – The purpose of this paper is to study the unsteady caivitating flows in centrifugal pump, especially for improving the turbulence model to obtain highly resolution results-capable of predicting the cavitation inception, shedding off and collapse procedures. Design/methodology/approach – Both numerical simulations and experimental visualizations were performed in the present paper. An improved RCD turbulence models was proposed by considering three corrected methods: the rotating corrected method, the compressible corrected method and the turbulent viscosity corrected method. Unsteady RANS computations were conducted to compare with the experiments. Findings – The comparison of pump cavitation performance showed that the RCD turbulence model obtained better performance both in non-cavitation and cavitation conditions. The visualization of the cavitation evolution was recorded to validate the unsteady simulations. Good agreement was noticed between calculations and visualizations. It is indicated the RCD model can successfully capture the bubbles detachment and collapse at the rear of the cavity region, since it effectively reduces the eddy viscosity in the multiphase region of liquid and vapor. Furthermore, the eddy viscosity, the instantaneous pressure and density distribution were investigated. The effectiveness of the compressibility was found. Meanwhile, the influence of the rotating corrected method on prediction was explored. It is found that the RCD model solved more unsteady flow characteristics. Originality/value – The current work presented a turbulence model which was much more suitable for predicting the cavitating flow in centrifugal pump.


2019 ◽  
Vol 7 (2) ◽  
pp. 80-87
Author(s):  
Andrii Avramenko

The results of a comparative numerical simulation of combustion and formation of toxic substances in a diesel engine combustion chamber are given. Experimental findings were used to identify the mathematical models. The impact of the standard, RNG and realizable k-ε turbulence models on the accuracy of numerical simulation of combustion and the formation of toxic substances was studied. The realizable k-ε turbulence model was shown to provide a closer agreement of computational and experimental data during simulation of the diesel engine process when turbulent flows are described.


Sign in / Sign up

Export Citation Format

Share Document