scholarly journals Modelling for Digital Twins—Potential Role of Surrogate Models

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 476
Author(s):  
Ágnes Bárkányi ◽  
Tibor Chován ◽  
Sándor Németh ◽  
János Abonyi

The application of white box models in digital twins is often hindered by missing knowledge, uncertain information and computational difficulties. Our aim was to overview the difficulties and challenges regarding the modelling aspects of digital twin applications and to explore the fields where surrogate models can be utilised advantageously. In this sense, the paper discusses what types of surrogate models are suitable for different practical problems as well as introduces the appropriate techniques for building and using these models. A number of examples of digital twin applications from both continuous processes and discrete manufacturing are presented to underline the potentials of utilising surrogate models. The surrogate models and model-building methods are categorised according to the area of applications. The importance of keeping these models up to date through their whole model life cycle is also highlighted. An industrial case study is also presented to demonstrate the applicability of the concept.

2020 ◽  
Vol 8 (1) ◽  
pp. 263-297
Author(s):  
Nazih Benoumechiara ◽  
Nicolas Bousquet ◽  
Bertrand Michel ◽  
Philippe Saint-Pierre

AbstractUncertain information on input parameters of computer models is usually modeled by considering these parameters as random, and described by marginal distributions and a dependence structure of these variables. In numerous real-world applications, while information is mainly provided by marginal distributions, typically from samples, little is really known on the dependence structure itself. Faced with this problem of incomplete or missing information, risk studies that make use of these computer models are often conducted by considering independence of input variables, at the risk of including irrelevant situations. This approach is especially used when reliability functions are considered as black-box models. Such analyses remain weakened in absence of in-depth model exploration, at the possible price of a strong risk misestimation. Considering the frequent case where the reliability output is a quantile, this article provides a methodology to improve risk assessment, by exploring a set of pessimistic dependencies using a copula-based strategy. In dimension greater than two, a greedy algorithm is provided to build input regular vine copulas reaching a minimum quantile to which a reliability admissible limit value can be compared, by selecting pairwise components of sensitive influence on the result. The strategy is tested over toy models and a real industrial case-study. The results highlight that current approaches can provide non-conservative results.


2020 ◽  
Vol 1 ◽  
pp. 757-766 ◽  
Author(s):  
J. Trauer ◽  
S. Schweigert-Recksiek ◽  
C. Engel ◽  
K. Spreitzer ◽  
M. Zimmermann

AbstractOver the last two decades, a concept called Digital Twin has evolved rapidly. Yet, there is no unified definition of the term. Based on a literature study and an industrial case study, an overarching definition of Digital twins is presented. Three characteristics were identified – representation of a physical system, bidirectional data exchange, and the connection along the entire lifecycle. Further, three sub-concepts are presented, namely: Engineering Twin, Production Twin, and Operation Twin. The presented paper thus formulates a consistent and detailed definition of Digital Twins.


2021 ◽  
Vol 8 ◽  
Author(s):  
J.A. Douthwaite ◽  
B. Lesage ◽  
M. Gleirscher ◽  
R. Calinescu ◽  
J. M. Aitken ◽  
...  

Digital twins offer a unique opportunity to design, test, deploy, monitor, and control real-world robotic processes. In this paper we present a novel, modular digital twinning framework developed for the investigation of safety within collaborative robotic manufacturing processes. The modular architecture supports scalable representations of user-defined cyber-physical environments, and tools for safety analysis and control. This versatile research tool facilitates the creation of mixed environments of Digital Models, Digital Shadows, and Digital Twins, whilst standardising communication and physical system representation across different hardware platforms. The framework is demonstrated as applied to an industrial case-study focused on the safety assurance of a collaborative robotic manufacturing process. We describe the creation of a digital twin scenario, consisting of individual digital twins of entities in the manufacturing case study, and the application of a synthesised safety controller from our wider work. We show how the framework is able to provide adequate evidence to virtually assess safety claims made against the safety controller using a supporting validation module and testing strategy. The implementation, evidence and safety investigation is presented and discussed, raising exciting possibilities for the use of digital twins in robotic safety assurance.


2020 ◽  
Vol 12 (6) ◽  
pp. 2307 ◽  
Author(s):  
Fabian Dembski ◽  
Uwe Wössner ◽  
Mike Letzgus ◽  
Michael Ruddat ◽  
Claudia Yamu

Cities are complex systems connected to economic, ecological, and demographic conditions and change. They are also characterized by diverging perceptions and interests of citizens and stakeholders. Thus, in the arena of urban planning, we are in need of approaches that are able to cope not only with urban complexity but also allow for participatory and collaborative processes to empower citizens. This to create democratic cities. Connected to the field of smart cities and citizens, we present in this paper, the prototype of an urban digital twin for the 30,000-people town of Herrenberg in Germany. Urban digital twins are sophisticated data models allowing for collaborative processes. The herein presented prototype comprises (1) a 3D model of the built environment, (2) a street network model using the theory and method of space syntax, (3) an urban mobility simulation, (4) a wind flow simulation, and (5) a number of empirical quantitative and qualitative data using volunteered geographic information (VGI). In addition, the urban digital twin was implemented in a visualization platform for virtual reality and was presented to the general public during diverse public participatory processes, as well as in the framework of the “Morgenstadt Werkstatt” (Tomorrow’s Cities Workshop). The results of a survey indicated that this method and technology could significantly aid in participatory and collaborative processes. Further understanding of how urban digital twins support urban planners, urban designers, and the general public as a collaboration and communication tool and for decision support allows us to be more intentional when creating smart cities and sustainable cities with the help of digital twins. We conclude the paper with a discussion of the presented results and further research directions.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8194
Author(s):  
Mehdi Kherbache ◽  
Moufida Maimour ◽  
Eric Rondeau

The Industrial Internet of Things (IIoT) is known to be a complex system because of its severe constraints as it controls critical applications. It is difficult to manage such networks and keep control of all the variables impacting their operation during their whole lifecycle. Meanwhile, Digital Twinning technology has been increasingly used to optimize the performances of industrial systems and has been ranked as one of the top ten most promising technological trends in the next decade. Many Digital Twins of industrial systems exist nowadays but only few are destined to networks. In this paper, we propose a holistic digital twinning architecture for the IIoT where the network is integrated along with the other industrial components of the system. To do so, the concept of Network Digital Twin is introduced. The main motivation is to permit a closed-loop network management across the whole network lifecycle, from the design to the service phase. Our architecture leverages the Software Defined Networking (SDN) paradigm as an expression of network softwarization. Mainly, the SDN controller allows for setting up the connection between each Digital Twin of the industrial system and its physical counterpart. We validate the feasibility of the proposed architecture in the process of choosing the most suitable communication mechanism that satisfies the real-time requirements of a Flexible Production System.


2021 ◽  
Author(s):  
Mairi Kerin ◽  
Duc Truong Pham ◽  
Jun Huang ◽  
Jeremy Hadall

Abstract A digital twin is a “live” virtual replica of a sensorised component, product, process, human, or system. It accurately copies the entity being modelled by capturing information in real time or near real time from the entity through embedded sensors and the Internet-of-Things. Many applications of digital twins in manufacturing industry have been investigated. This article focuses on the development of product digital twins to reduce the impact of quantity, quality, and demand uncertainties in remanufacturing. Starting from issues specific to remanufacturing, the article derives the functional requirements for a product digital twin for remanufacturing and proposes a UML model of a generic asset to be remanufactured. The model has been demonstrated in a case study which highlights the need to translate existing knowledge and data into an integrated system to realise a product digital twin, capable of supporting remanufacturing process planning.


Author(s):  
Sigrid S. Johansen ◽  
Amir R. Nejad

Abstract A digital twin is a virtual representation of a system containing all information available on site. This paper presents condition monitoring of drivetrains in marine power transmission systems through digital twin approach. A literature review regarding current operations concerning maintenance approaches in todays practices are covered. State-of-the-art fault detection in drivetrains is discussed, founded in condition monitoring, data-based schemes and model-based approaches, and the digital twin approach is introduced. It is debated that a model-based approach utilizing a digital twin could be recommended for fault detection of drivetrains. By employing a digital twin, fault detection would be extended to relatively highly diagnostic and predictive maintenance programme, and operation and maintenance costs could be reduced. A holistic model system approach is considered, and methodologies of digital twin design are covered. A physical-based model rather than a data based model is considered, however there are no clear answer whereas which type is beneficial. That case is mostly answered by the amount of data available. Designing the model introduces several pitfalls depending on the relevant system, and the advantages, disadvantages and appropriate applications are discussed. For a drivetrain it is found that multi-body simulation is advised for the creation of a digital twin model. A digital twin of a simple drivetrain test rig is made, and different modelling approaches were implemented to investigate levels of accuracy. Reference values were derived empirically by attaching sensors to the drivetrain during operation in the test rig. Modelling with a low fidelity model showed high accuracy, however it would lack several modules required for it to be called a digital twin. The higher fidelity model showed that finding the stiffness parameter proves challenging, due to high stiffness sensitivity as the experimental modelling demonstrates. Two industries that could have significant benefits from implementing digital twins are discussed; the offshore wind industry and shipping. Both have valuable assets, with reliability sensitive systems and high costs of downtime and maintenance. Regarding the shipping industry an industrial case study is done. Area of extra focus is operations of Ro-Ro (roll on-roll off) vessels. The vessels in the case study are managed by Wilhelmsen Ship Management and a discussion of the implementation of digital twins in this sector is comprised in this article.


2013 ◽  
Vol 4 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Aldona Kluczek ◽  
Władysław Włosiński

Abstract Manufacturing techniques are concerned with quality, cost, productivity and sustainability. With today‘s environmental awareness and the pressure of the sustainability requirements, existing manufacturing techniques of heating devices are evolving into the redesign manufacturing unit processes to increase overall sustainability. Also, these techniques need a measurement method to assess processes-related sustainability performance indicators. The purpose of this paper is to stress the role of manufacturing techniques: welding, cleaning and painting in the manufacture of heating appliances (solid fuel fired boilers used renewable energy sources) in terms of incorporating into the field the concept of sustainable development. It then focuses on the environmental, technical, economical and social impact of sustainable technologies and argues for the need to ensure that the concept is being applied to the manufacture of heating devices. In this paper, author tries to propose a unified, standard scientific factory-level methodology to evaluate the influence of manufacturing techniques on the sustainability of enterprises producing heating devices. The proposed methodology in the terms of the case study is a comprehensive answer to the question of to what extent the improvements in those techniques influence the sustainable development of the enterprises. An industrial case study demonstrates that the proposed improvements can effectively influence the sustainability of enterprise. The results of this assessment can be applied to broad industry sectors, and can lead to the accepted measures and practices.


Author(s):  
D. J. Wagg ◽  
K. Worden ◽  
R. J. Barthorpe ◽  
P. Gardner

Abstract This paper presents a review of the state of the art for digital twins in the application domain of engineering dynamics. The focus on applications in dynamics is because: (i) they offer some of the most challenging aspects of creating an effective digital twin, and (ii) they are relevant to important industrial applications such as energy generation and transport systems. The history of the digital twin is discussed first, along with a review of the associated literature; the process of synthesizing a digital twin is then considered, including definition of the aims and objectives of the digital twin. An example of the asset management phase for a wind turbine is included in order to demonstrate how the synthesis process might be applied in practice. In order to illustrate modeling issues arising in the construction of a digital twin, a detailed case study is presented, based on a physical twin, which is a small-scale three-story structure. This case study shows the progression toward a digital twin highlighting key processes including system identification, data-augmented modeling, and verification and validation. Finally, a discussion of some open research problems and technological challenges is given, including workflow, joints, uncertainty management, and the quantification of trust. In a companion paper, as part of this special issue, a mathematical framework for digital twin applications is developed, and together the authors believe this represents a firm framework for developing digital twin applications in the area of engineering dynamics.


Sign in / Sign up

Export Citation Format

Share Document