scholarly journals Upgrading of Coffee Biocrude Oil Produced by Pyrolysis of Spent Coffee Grounds: Behavior of Fatty Acids in Supercritical Ethanol Reaction and Catalytic Cracking

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 835
Author(s):  
Ji-Yeon Park ◽  
Md Amirul Alam Kanak ◽  
In-Gu Lee

Spent coffee grounds contain lipids (fatty acids) in addition to cellulose, hemicellulose, and lignin. The reaction process for upgrading biocrude oil produced from spent coffee grounds is different from that followed for upgrading biomass pyrolysis oil, such as processes that utilize sawdust. The feasibility of upgrading coffee biocrude oil through a supercritical ethanol reaction with plastic pyrolysis oil and through catalytic cracking for the improvement of the undesirable properties of biocrude oil, caused by the presence of oxygenated compounds, was evaluated. The initial oxygen content of the coffee biocrude oil was 16.9 wt%. The oil comprised a total content of 40.9% fatty acids, as found by analyzing the GC-MS peak area. After the supercritical ethanol reaction at 340 ∘C, the oxygen content was decreased to 9.9 wt%. When the MgNiMo/AC catalyst was applied to the supercritical reaction, the oxygen content was further decreased to 8.5 wt%. The esterification of the fatty acids in the biocrude oil with ethanol converted them to esters. After the supercritical reaction of coffee biocrude oil with plastic pyrolysis oil (1:2 (w/w)), the oxygen content was 6.4 wt%. After the catalytic cracking of the biocrude oil by Ni/MCM-41 at 400 ∘C, the fatty acids were converted to hydrocarbons, C9 to C21, and the oxygen content decreased to a final value of 2.8 wt%.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255794
Author(s):  
Sami Abou Fayssal ◽  
Zeina El Sebaaly ◽  
Mohammed A. Alsanad ◽  
Rita Najjar ◽  
Michael Böhme ◽  
...  

No previous study assessed the combined effect of olive pruning residues (OLPR) and spent coffee grounds (SCG) on P. ostreatus production and nutritional value. The aim of this study was to determine the capacity of P. ostreatus to degrade lignocellulosic nature of combined OLPR and SCG as well as their resultant nutrient composition. A complete randomized design was adopted with five treatments: S1:100%wheat straw (WS) (control), S2:33%WS+33%SCG+33%OLPR,S3:66%WS+17%SCG+17%OLPR,S4:17%WS+66%SCG+17%OLPR, and S5:17%WS+17%SCG+66%OLPR, and ten replicates per treatment. Substrate’s and mushroom’s composition were analyzed on chemical scale, including fatty acids and heavy metals profiles, following international standards. Only S1, S2, and S3 were productive, with comparable biological yield, economical yield, and biological efficiency. Organic matter loss decreased with increasing proportions of OLPR and SCG. Percentage lignin loss was higher in S1 than in S2 and S3 (53.51, 26.25, and 46.15% respectively). Mushrooms of S3 had some enhanced nutritional attributes compared to control: decrease in fat, increase in protein, increase in monounsaturated fatty acids, and lower zinc accumulation. Lead was less accumulated in S2 than S1 mushrooms. Sodium content of mushroom decreased in S2 and S3. The latter substrates yielded mushrooms with lower polyunsaturated fatty acids (PUFA) and higher saturated fatty acids (SFA) contents. All mushrooms had a valuable PUFA/SFA. This study suggests using OLPR and SCG in low proportions as nutritional supplements to the commercial wheat straw.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1411 ◽  
Author(s):  
Amaia Iriondo-DeHond ◽  
Fresia Santillan Cornejo ◽  
Beatriz Fernandez-Gomez ◽  
Gema Vera ◽  
Eduardo Guisantes-Batan ◽  
...  

The bioaccessibility, metabolism, and excretion of lipids composing spent coffee grounds (SCGs) were investigated. An analysis of mycotoxins and an acute toxicity study in rats were performed for safety evaluation. Total fat, fatty acids, and diterpenes (cafestol and kahweol) were determined in SCGs and their digests obtained in vitro. A pilot repeated intake study was carried out in Wistar rats using a dose of 1 g SCGs/kg b.w. for 28 days. Fat metabolism was evaluated by analysis of total fat, cholesterol, and histology in liver. The dietary fiber effect of SCGs was measured radiographically. The absence of mycotoxins and toxicity was reported in SCGs. A total of 77% of unsaturated fatty acids and low amounts of kahweol (7.09 µg/g) and cafestol (414.39 µg/g) were bioaccessible after in vitro digestion. A significantly lower (p < 0.1) accumulation of lipids in the liver and a higher excretion of these in feces was found in rats treated with SCGs for 28 days. No lipid droplets or liver damage were observed by histology. SCGs acutely accelerated intestinal motility in rats. SCGs might be considered a sustainable, safe, and healthy food ingredient with potential for preventing hepatic steatosis due to their effect as dietary fiber with a high fat-holding capacity.


2021 ◽  
Vol 24 (1) ◽  
pp. 1548-1558
Author(s):  
Danh C. Vu ◽  
Quyen T. Vu ◽  
Long Huynh ◽  
Chung-Ho Lin ◽  
Sophie Alvarez ◽  
...  

Coffee is among the favorite drinks in Vietnam and many other countries. Production and consumption of coffee have released a huge amount of spent coffee ground. This study aimed to determine phenolic acids and fatty acids of spent coffee grounds collected in Ho Chi Minh city and how phenolic acid profile was affected by different environmentally friendly extractants. The results showed that average level of chlorogenic acid in ethanol/water extracts (840.4 779.9g/g) was significantly higher compared to water extracts (300.0g/g). Furthermore, the average total level of phenolic acids in ethanol/water extracts (1215.3g/g dry weight) was greater than that in the water extracts (779.9g/g dry weight). This indicated that ethanol/water outperformed water in regard to extraction of phenolic acids in the spent coffee grounds. Oil extracted from the spent coffee grounds was rich in linoleic acid (61g/g) and palmitic acid (47g/g). The findings of our study showed that the spent coffee grounds originating in Vietnam are a good source of phenolic acids and polyunsaturated fatty acids that could be utilized for food and nutraceutical production.


Author(s):  
Sula M. V. Feleti ◽  
Renê L. Aleluia ◽  
Suiany V. Gervásio ◽  
Jean Carlos V. Dutra ◽  
Jessica R. P. Oliveira ◽  
...  

The study was designed to investigate the chemical composition and the biological effects of G. parviflora and V. polyanthes ethanolic extracts in vitro. Total content of phenols, flavonoids and tannins was quantified by spectrophotometry; chemical characterization was permed by mass spectrometry (ESI (-) FT-ICR MS and APCI (+) FT-ICR MS analysis). Antioxidant activities were determined by FRAP and Fe2+ chelating methods. Extracts cytotoxicity was evaluated in human lymphocytes, sarcoma-180 (S-180) and human gastric adenocarcinoma (AGS) cells, by MTT assay. V. polyanthes presented higher total content of tannins and G. parviflora presented higher amount of phenols and flavonoids. Chemical characterization showed the presence of flavonoids, phenolic acids and sesquiterpene lactones in V. polyanthes extract, and steroids, phenolic acids and fatty acids (Poly Unsaturated Fatty Acids - PUFA) in G. parviflora extract. V. polyanthes extract stood out in the Fe2+ chelation test. G. parviflora extract did not present outstanding antioxidant results in the tested protocols. Both species showed a tendency to promote cytotoxicity in human lymphocyte cells. Regarding the antiproliferative effect, both species were able to reduce S-180 cell viability and G. parviflora extract showed high antiproliferative potential in the assay with AGS cells. These findings reinforce the medicinal use of these plants, as well as suggest their potential use for the development of new drugs and for the treatment of cancers.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4667
Author(s):  
Sunyong Park ◽  
Hui-Rim Jeong ◽  
Yun-A Shin ◽  
Seok-Jun Kim ◽  
Young-Min Ju ◽  
...  

Agricultural by-products have several disadvantages as fuel, such as low calorific values and high ash contents. To address these disadvantages, this study examined the mixing of agricultural by-products and spent coffee grounds, for use as a solid fuel, and the improvement of fuel characteristics through torrefaction. Pepper stems and spent coffee grounds were first dried to moisture contents of <15% and then combined, with mixing ratios varying from 9:1 to 6:4. Fuel pellets were produced from these mixtures using a commercial pelletiser, evaluated against various standards, and classified as grade A, B, or Bio-SRF. The optimal ratio of pepper stems to spent coffee grounds was determined to be 8:2. The pellets were torrefied to improve their fuel characteristics. Different torrefaction temperatures improved the mass yields of the pellets to between 50.87% and 88.27%. The calorific value increased from 19.9% to 26.8% at 290 °C. The optimal torrefaction temperature for coffee ground pellets was 230 °C, while for other pellets, it was 250 °C. This study provides basic information on the potential enhancement of agricultural by-products for fuel applications.


Sign in / Sign up

Export Citation Format

Share Document