scholarly journals Squirrel-Cage Fan System Optimization and Flow Field Prediction Using Parallel Filling Criterion and Surrogate Model

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1620
Author(s):  
Qianhao Xiao ◽  
Xuna Shi ◽  
Linghui Wu ◽  
Jun Wang ◽  
Yanyan Ding ◽  
...  

In this study, the blade shape of the squirrel-cage fan system inside the range hood was optimized using the surrogate model to improve the maximum volume flow rate. The influence of computational fluid dynamics (CFD) noise was concerned. The regression Kriging model (RKM) was used as a surrogate model to reflect the relationship between the design parameters of the blade and the volume flow rate. The parallel filling criterion after re-interpolation was used to improve the optimization efficiency further and ensure global optimization. Through experimental verification, we found that the relative error between the volume flow rate of the optimal sample of RKM and the experiment was only 0.4%. Compared with the prototype, the maximum volume flow rate of the optimal sample of RKM was increased by 2.9%, and the efficiency under the corresponding working conditions was increased by 2%. RKM was used to predict the velocity field of the volute and impeller exit section to explore the feasibility of the RKM in the flow field prediction. Research shows that the RKM cannot accurately predict the velocity of each grid on the cross-section. Still, it can accurately predict the changing trend of the velocity.

Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


Author(s):  
Reinhard Willinger

Squirrel-cage fans are centrifugal fans with forward-curved blades. A large number of short blades of thin circular arc sheet metal provide a low diameter drum-type rotor of high axial length. Cross-flow fans have a similar rotor design. However, the flow passes the rotor in radial direction two times. One consequence of the forward-curved blades is that there is more or less no pressure rise in the rotor and the casing has to convert the high absolute rotor exit velocity into a global pressure rise. Both types are used in applications requiring low size, relative high volume flow rates, low costs and low noise at the drawback of relative low efficiency. Volume flow rate, specific isentropic enthalpy difference, rotor outer diameter and rotational speed of a single stage fan can be transformed to speed number and diameter number. For axial, radial and mixed flow fans, a single relationship (CORDIER-diagram) exists and it is well accepted that this line represents “optimum” fan designs with high efficiency. The paper provides a theoretical interpretation of the CORDIER-lines for squirrel-cage and cross-flow fans, since they differ considerably from the classical relationship. Based on velocity triangles and energy transfer, CORDIER-line of squirrel-cage fans depends on absolute inlet flow angle, relative exit flow angle, rotor inlet to exit diameter ratio, relative axial rotor width and circumferential efficiency. Additionally, the CORDIER-line of cross-flow fans depends on the degree of admission. At a distinguished pressure coefficient, a maximum speed number is found, corresponding to maximum volume flow rate.


Author(s):  
Qianhao Xiao ◽  
Boyan Jang ◽  
Jun Wang

The cut volute profile is far and widely used in the squirrel cage fan to meet the space limitation of range hood systems. The cut volute profile often causes unreasonable impeller–volute interference and the aerodynamic performance of the fan to drop. A numerical model combined with the neural network and the genetic algorithm of a squirrel cage fan volute for a range hood is presented in this paper. The secondary non-uniform B-spline curve represents the volute profile variation law, and its control points are used as design variables to meet space constraints. The goal of global optimization is to maximize the efficiency and volume flow rate. As a result of the optimization, the internal flow loss of the fan is reduced compared with the prototype. The volume flow rate and efficiency are increased by over 4.4% in case of optimized volute than the original configuration of the volute.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


2010 ◽  
Vol 7 (3) ◽  
pp. 169-176 ◽  
Author(s):  
S. K. Pandey ◽  
Dharmendra Tripathi

The paper presents an analytical investigation of the peristaltic transport of a viscous fluid under the influence of a magnetic field through a tube of finite length in a dimensionless form. The expressions of pressure gradient, volume flow rate, average volume flow rate and local wall shear stress have been obtained. The effects of the transverse magnetic field and electrical conductivity (i.e. the Hartmann number) on the mechanical efficiency of a peristaltic pump have also been studied. The reflux phenomenon is also investigated. It is concluded, on the basis of the pressure distribution along the tubular length and pumping efficiency, that if the transverse magnetic field and the electric conductivity increase, the pumping machinery exerts more pressure for pushing the fluid forward. There is a linear relation between the averaged flow rate and the pressure applied across one wavelength that can restrain the flow due to peristalsis. It is found that there is a particular value of the averaged flow rate corresponding to a particular pressure that does not depend on the Hartmann number. Naming these values ‘critical values’, it is concluded that the pressure required for checking the flow increases with the Hartmann number above the critical value and decreases with it below the critical value. It is also inferred that magneto-hydrodynamic parameters make the fluid more prone to flow reversal. The conclusion applied to oesophageal swallowing reveals that normal water is easier to swallow than saline water. The latter is more prone to flow reversal. A significant difference between the propagation of the integral and non-integral number of waves along the tube is that pressure peaks are identical in the former and different in the latter cases.


Author(s):  
Hyungki Shin ◽  
Junhyun Cho ◽  
Young-Jin Baik ◽  
Jongjae Cho ◽  
Chulwoo Roh ◽  
...  

Power generation cycle — typically Brayton cycle — to use CO2 at supercritical state as working fluid have been researched many years because this cycle increase thermal efficiency of cycle and decrease turbomachinery size. But small turbomachinery make it difficult to develop proto type Supercritical Carbon dioxide (S-CO2) cycle equipment of lab scale size. KIER (Korea Institute of Energy Research) have been researched S-CO2 cycle since 2013. This paper is about 60kWe scale and sub-kWe class turbo generator development for applying to this S-CO2 cycle at the lab scale. A design concept of this turbo-generator is to use commercially available components so as to reduce development time and increase reliability. Major problem of SCO2 turbine is small volume flow rate and huge axial force. High density S-CO2 was referred as advantage of S-CO2 cycle because it make small turbomachinery possible. But this advantage was not valid in lab-scale cycles under 100kW because small amount volume flow rate means high rotating speed and too small diameter of turbine to manufacture it. Also, high inlet and outlet pressure make huge axial force. To solve these problem, KIER have attempt various turbines. In this paper, these attempts and results are presented and discussed.


2014 ◽  
Vol 644-650 ◽  
pp. 373-376
Author(s):  
Li Liu ◽  
Yi Ping Lu ◽  
Jia De Han ◽  
Xue Mei Sun

Air volume flow rate distribution of stator ducts along axial and circumferential for salient pole synchronous motor is strongly influenced by the air flow field in the air gap and rotor poles, which is completely different from the flow characteristics of non-salient pole motor and it directly relates to the peak temperature of stator bars and core and axial temperature difference which can affect the safety of the operation. A three-dimensional physical model of 1/8 motor was established and corresponding solution domain boundary conditions were given in this article. The air volume flow rate distribution of stator ducts along axial and circumferential was analyzed based on CFD. The study show that at the same position of the axial stator, the cooling air flow into stator ducts along the circumferential direction is uneven, the air volume flow rate distribution is largely influenced by rotor pole pieces, geometry and position of pole support block and rotor rotation direction.


Author(s):  
Gerardo L. Augusto ◽  
Alvin B. Culaba ◽  
Laurence A. Gan Lim

The design criteria of converter cooling system for a 2.5 MW permanent magnet direct-drive wind turbine generator were investigated. Two (2) distribution networks with pipe sizes of DN40 and DN50 were used as basis for fluid flow analysis. The theoretical system pressure drop and system volume flow rate of converter cooling system were calculated using the governing equations of mass conservation, pump performance curve and distribution network characteristics. The system of nonlinear equations was solved using multivariable Newton-Raphson method with the solution vector determined using LU decomposition method. Numerical results suggest that the DN50 pipe provides a pressure drop limit of less than 300 Pa/m in the converter cooling system better than the pressure drop obtained from a DN40 pipe. The system volume flow rate of DN50 pipe was found to be above the operating limit of heat exchanger requirement of 135.30 L/min which needs to dissipate heat with a minimum of 50 kW.


Sign in / Sign up

Export Citation Format

Share Document