scholarly journals Tracking and Separation of Smart Home Residents through Ambient Activity Sensors

Proceedings ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 29 ◽  
Author(s):  
Sebastian Matthias Müller ◽  
Andreas Hein

To enable independent living for people in need of care and to accommodate the increasing demand of ambulant care due to demographic changes, a multitude of systems and applications that monitor activities and health-related data based on ambient sensors commonly found in smart homes have been developed. When such a system is used in a multi-person household, some form of identification or separation of residents is required. Most of these systems require permanent participation in the form of body-worn sensors or a complicated supervised learning procedure which may take hours or days to set up. To resolve this, we study several unsupervised learning approaches for the separation of activity data of multiple residents recorded with ambient, binary sensors such as light barriers and contact switches. We show how various clustering methods on data from a tracking system can, under optimal conditions, separate the activity of two residents with low error rates (<2%, Rand Index of 0 . 959 ). We also show that imprecisions in the underlying tracking algorithm have a significant impact on the clustering performance and that most of these errors can be corrected by adding a single “identifying sensor area” into the environment. As a consequence, activity monitoring applications need to rely less on body-worn sensors, which may be forgotten or biometric sensors, which may be perceived as a violation of privacy.

2019 ◽  
Vol 9 (6) ◽  
pp. 1215-1223 ◽  
Author(s):  
Fiaz Majeed ◽  
Muhammad Waqas Asif ◽  
Muhammad Awais Hassan ◽  
Syed Ali Abbas ◽  
M. Ikramullah Lali

The trend of news transmission is rapidly shifting from electronic media to social media. Currently, news channels in general, while health news channels specifically send health related news on social media sites. These news are beneficial for the patients, medical professionals and the general public. A lot of health related data is available on the social media that may be used to extract significant information and present several predictions from it to assist physicians, patients and healthcare organizations for decision making. However, A little research is found on health news data using machine learning approaches, thus in this paper, we have proposed a framework for the data collection, modeling, and visualization of the health related patterns. For the analysis, the tweets of 13 news channels are collected from the Twitter. The dataset holds approximately 28k tweets available under 280 hashtags. Furthermore, a comprehensive set of experiments are performed to extract patterns from the data. A comparative analysis is carried among the baseline method and four classification algorithms which include Naive Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (J48). For the evaluation of the results, the standard measures accuracy, precision, recall and f-measure have been used. The results of the study are encouraging and better than the other studies of such kind.


2015 ◽  
Author(s):  
William E. Hammond ◽  
Vivian L. West ◽  
David Borland ◽  
Igor Akushevich ◽  
Eugenia M. Heinz

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2681
Author(s):  
Kedir Mamo Besher ◽  
Juan Ivan Nieto-Hipolito ◽  
Raymundo Buenrostro-Mariscal ◽  
Mohammed Zamshed Ali

With constantly increasing demand in connected society Internet of Things (IoT) network is frequently becoming congested. IoT sensor devices lose more power while transmitting data through congested IoT networks. Currently, in most scenarios, the distributed IoT devices in use have no effective spectrum based power management, and have no guarantee of a long term battery life while transmitting data through congested IoT networks. This puts user information at risk, which could lead to loss of important information in communication. In this paper, we studied the extra power consumed due to retransmission of IoT data packet and bad communication channel management in a congested IoT network. We propose a spectrum based power management solution that scans channel conditions when needed and utilizes the lowest congested channel for IoT packet routing. It also effectively measured power consumed in idle, connected, paging and synchronization status of a standard IoT device in a congested IoT network. In our proposed solution, a Freescale Freedom Development Board (FREDEVPLA) is used for managing channel related parameters. While supervising the congestion level and coordinating channel allocation at the FREDEVPLA level, our system configures MAC and Physical layer of IoT devices such that it provides the outstanding power utilization based on the operating network in connected mode compared to the basic IoT standard. A model has been set up and tested using freescale launchpads. Test data show that battery life of IoT devices using proposed spectrum based power management increases by at least 30% more than non-spectrum based power management methods embedded within IoT devices itself. Finally, we compared our results with the basic IoT standard, IEEE802.15.4. Furthermore, the proposed system saves lot of memory for IoT devices, improves overall IoT network performance, and above all, decrease the risk of losing data packets in communication. The detail analysis in this paper also opens up multiple avenues for further research in future use of channel scanning by FREDEVPLA board.


2021 ◽  
Vol 13 (6) ◽  
pp. 3572
Author(s):  
Lavinia-Maria Pop ◽  
Magdalena Iorga ◽  
Iulia-Diana Muraru ◽  
Florin-Dumitru Petrariu

A busy schedule and demanding tasks challenge medical students to adjust their lifestyle and dietary habits. The aim of this study was to identify dietary habits and health-related behaviours among students. A number of 403 students (80.40% female, aged M = 21.21 ± 4.56) enrolled in a medical university provided answers to a questionnaire constructed especially for this research, which was divided into three parts: the first part collected socio-demographic, anthropometric, and medical data; the second part inquired about dietary habits, lifestyle, sleep, physical activity, water intake, and use of alcohol and cigarettes; and the third part collected information about nutrition-related data and the consumption of fruit, vegetables, meat, eggs, fish, and sweets. Data were analysed using SPSS v24. Students usually slept M = 6.71 ± 1.52 h/day, and one-third had self-imposed diet restrictions to control their weight. For both genders, the most important meal was lunch, and one-third of students had breakfast each morning. On average, the students consumed 1.64 ± 0.88 l of water per day and had 220 min of physical activity per week. Data about the consumption of fruit, vegetables, meat, eggs, fish, sweets, fast food, coffee, tea, alcohol, or carbohydrate drinks were presented. The results of our study proved that medical students have knowledge about how to maintain a healthy life and they practice it, which is important for their subsequent professional life.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S131-S132
Author(s):  
Kathryn Hogan ◽  
Beena Umar ◽  
Mohamed Alhamar ◽  
Kathleen Callahan ◽  
Linoj Samuel

Abstract Objectives There are few papers that characterize types of errors in microbiology laboratories and scant research demonstrating the effects of interventions on microbiology lab errors. This study aims to categorize types of culture reporting errors found in microbiology labs and to document the error rates before and after interventions designed to reduce errors and improve overall laboratory quality. Methods To improve documentation of error incidence, a self-reporting system was changed to an automatic reporting system. Errors were categorized into five types Gram stain (misinterpretations), identification (incorrect analysis), set up labeling (incorrect patient labels), procedures (not followed), and miscellaneous. Error rates were tracked according to technologist, and technologists were given real-time feedback by a manager. Error rates were also monitored in the daily quality meeting and frequently detected errors were discussed at staff meetings. Technologists attended a year-end review with a manager to improve their performance. To maintain these changes, policies were developed to monitor technologist error rate and to define corrective measures. If a certain number of errors per month was reached, technologists were required to undergo retraining by a manager. If a technologist failed to correct any error according to protocol, they were also potentially subject to corrective measures. Results In 2013, we recorded 0.5 errors per 1,000 tests. By 2018, we recorded only 0.1 errors per 1,000 tests, an 80% decrease. The yearly culture volume from 2013 to 2018 increased by 32%, while the yearly error rate went from 0.05% per year to 0.01% per year, a statistically significant decrease (P = .0007). Conclusion This study supports the effectiveness of the changes implemented to decrease errors in culture reporting. By tracking errors in real time and using a standardized process that involved timely follow-up, technologists were educated on error prevention. This practice increased safety awareness in our micro lab.


2021 ◽  
Author(s):  
Ben Philip ◽  
Mohamed Abdelrazek ◽  
Alessio Bonti ◽  
Scott Barnett ◽  
John Grundy

UNSTRUCTURED Our objective is to better understand health-related data collection across different mHealth app categories. This would help in developing a health domain model for mHealth apps to facilitate app development and data sharing between these apps to improve user experience and reduce redundancy in data collection. We identified app categories listed in a curated library which was then used to explore the Google Play Store for health/medical apps that were then filtered using our inclusion criteria. We downloaded and analysed these apps using a script we developed around the popular AndroGuard tool. We analysed the use of Bluetooth peripherals and built-in sensors to understand how a given app collects/generates health data. We retrieved 3,251 applications meeting our criteria, and our analysis showed that only 10.7% of these apps requested permission for Bluetooth access. We found 50.9% of the Bluetooth Service UUIDs to be known in these apps, with the remainder being vendor specific. The most common health-related services using the known UUIDs were Heart Rate, Glucose and Body Composition. App permissions show the most used device module/sensor to be the camera (20.57%), closely followed by GPS (18.39%). Our findings are consistent with previous studies in that not many health apps were found to use built-in sensors or peripherals for collecting health data. The use of more peripherals and automated data collection along with integration with other apps could increase usability and convenience which would eventually also improve user experience and data reliability.


2020 ◽  
Vol 49 (D1) ◽  
pp. D509-D515
Author(s):  
Chuanyu Lyu ◽  
Tong Chen ◽  
Bo Qiang ◽  
Ningfeng Liu ◽  
Heyu Wang ◽  
...  

Abstract Marine organisms are expected to be an important source of inspiration for drug discovery after terrestrial plants and microorganisms. Despite the remarkable progress in the field of marine natural products (MNPs) chemistry, there are only a few open access databases dedicated to MNPs research. To meet the growing demand for mining and sharing for MNPs-related data resources, we developed CMNPD, a comprehensive marine natural products database based on manually curated data. CMNPD currently contains more than 31 000 chemical entities with various physicochemical and pharmacokinetic properties, standardized biological activity data, systematic taxonomy and geographical distribution of source organisms, and detailed literature citations. It is an integrated platform for structure dereplication (assessment of novelty) of (marine) natural products, discovery of lead compounds, data mining of structure-activity relationships and investigation of chemical ecology. Access is available through a user-friendly web interface at https://www.cmnpd.org. We are committed to providing a free data sharing platform for not only professional MNPs researchers but also the broader scientific community to facilitate drug discovery from the ocean.


Sign in / Sign up

Export Citation Format

Share Document