scholarly journals Current Status of Digital Complete Dentures Technology

Prosthesis ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 229-244
Author(s):  
Aristeidis Villias ◽  
Hercules Karkazis ◽  
Stavros Yannikakis ◽  
Antonios Theocharopoulos ◽  
Nikitas Sykaras ◽  
...  

Fabrication of complete dentures (CDs) utilizing computer-aided design and computer-aided manufacturing (CAD/CAM) methods has attracted a lot of attention. The purpose of this paper was to summarize current knowledge about digital CDs and the relevant technology, and to present the application of the new technology in a dental geriatrics case. Initially, some of the challenges regarding digitization of the oral mucosa as a supporting surface of the CDs’ intaglio surface are listed. Next, a brief introduction of the CAD software capabilities regarding CDs is presented. The latest CAM additive and subtractive techniques for CDs are following. Subsequently, the consecutive steps for the construction of a digital CD as part of the prosthodontic treatment of a 90-year-old ambulative female patient are presented. Finally, some considerations about the digital workflow in CD manufacturing are discussed. In conclusion, the new digital technology has clear advantages; however, implementation requires careful planning. The digital workflow is applicable and versatile.

Prosthesis ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 46-52 ◽  
Author(s):  
Leonardo Cavallo ◽  
Antonia Marcianò ◽  
Marco Cicciù ◽  
Giacomo Oteri

(1) Background: To mitigate the shortage of respiratory devices during the Covid-19 epidemic, dental professional volunteers can contribute to create printed plastic valves, adapting the dental digital workflow and converting snorkeling masks in emergency CPAP (continuous positive airways pressure) devices. The objective of this report was to provide the specific settings to optimize printing with the 3D printers of the dental industry. (2) Methods: In order to provide comprehensive technical notes to volunteer dental professionals interested in printing Charlotte and Dave connectors to breathing devices, the entire digital workflow is reported. (3) Results: The present paper introduces an alternative use of the dental Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) machinery, and reports on the fabrication of a 3D printed connection prototypes suitable for connection to face masks, thereby demonstrating the feasibility of this application. (4) Conclusions: This call for action was addressed to dentists and dental laboratories who are willing to making available their experience, facilities and machinery for the benefit of patients, even way beyond dentistry.


Author(s):  
Esti Davidovich ◽  
Shlomi Dagon ◽  
Israel Tamari ◽  
Michael Etinger ◽  
Eitan Mijiritsky

Until recently, the treatment for molar incisor hypomineralization (MIH) mainly included interim restorations such as resin restorations and stainless-steel crowns. These require replacement after adolescence. The use of intraoral scanners (IOS) has opened a new venue for restoring MIH teeth, by reducing the challenge of dealing with uncooperative children’s behavior and enabling tooth structure preservation and long-lasting restoration. We present an innovative treatment approach for children with MIH, using a digital workflow with IOS and CAD-CAM (computer-aided design and computer-aided manufacturing) fabrication of the restoration. The overall protocol involves a thorough diagnostic phase throughout treatment planning, which takes into consideration the child’s behavior and the parent’s cooperation and compliance. Initial preparation consists of inhalation sedation if needed, an effective local anesthesia, and the use of a rubber dam. Removal of all areas of enamel and dentin porosity is essential, and the tooth/teeth must be appropriately prepared to accommodate inlays or onlays for molars and labial veneers for incisors. IOS impressions are taken, including scanning of the prepared tooth and its antagonist, scanning of the bite, and CAD-CAM preparation of the restoration. Next is restoration, cementation, and follow up. Digital workflow provides definitive restorations in young patients due to the high accuracy of the scanning.


2014 ◽  
Vol 40 (6) ◽  
pp. 722-728 ◽  
Author(s):  
Avinash S. Bidra

Recently, computer-aided technology has become commercially available in the United States for fabrication of complete dentures. Manufacturers offering this technology require exclusive clinical and laboratory protocols that sharply contrast with the traditional paradigms of complete denture therapy. These protocols allow fabrication of complete dentures in only 2 clinical appointments. Currently, there are no clinical reports in the scientific literature describing the use of this technology for overdentures. This article describes the successful use of computer aided design-computer aided machining (CAD-CAM) technology for prosthodontic phase of fabrication of a mandibular implant-retained overdenture in only 2 clinical appointments. A discussion of the techniques, rationale, indications, advantages, and disadvantages of using CAD-CAM technology for complete dentures and overdentures are described in this article.


2017 ◽  
Vol 5 (6) ◽  
pp. 785-789 ◽  
Author(s):  
Nadica Janeva ◽  
Gordana Kovacevska ◽  
Edvard Janev

The introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) technology into complete denture (CD) fabrication ushered in a new era in removable prosthodontics. Commercially available CAD/CAM denture systems are expected to improve upon the disadvantages associated with conventional fabrication. The purpose of this report is to present the workflow involved in fabricating a CD with a traditional clinical recording method and CAD/CAM technology and to summarize the advantages to the dental practitioner and the patient.


2021 ◽  
Vol 26 (6) ◽  
Author(s):  
Taís de Morais Alves da CUNHA ◽  
Inessa da Silva BARBOSA ◽  
Karolinne Kaila PALMA

ABSTRACT Introduction: The digital technology has contributed to improve and simplify diagnosis, treatment planning and execution in Orthodontics. Among CAD/CAM system (Computer-Aided Design / Computer-Aided Manufacturing) applications in Orthodontics, we highlight the installation and removal of fixed appliance, clear aligners, customized appliances, and retainers fabricated in digital environment. This approach has several advantages for practitioner and patient, as it enhances appliances precision, directly interferes in treatment time and predictability. Even with all the benefits arising from the digital workflow, few orthodontists have adopted this technique in their clinical practice, most due to high cost and lack of technical preparation for proper execution. Objectives: Thus, given the importance of digital technology to improve specialty performance and the still incipient incorporation of digital flow in Orthodontics, the purpose of this article is to describe the available resources and clinical applications of the CAD/CAM technology in Orthodontics.


2022 ◽  
Vol 12 (2) ◽  
pp. 551
Author(s):  
Andrea Scribante ◽  
Simone Gallo ◽  
Maurizio Pascadopoli ◽  
Pietro Canzi ◽  
Stefania Marconi ◽  
...  

In the last years, both medicine and dentistry have come across a revolution represented by the introduction of more and more digital technologies for both diagnostic and therapeutic purposes. Additive manufacturing is a relatively new technology consisting of a computer-aided design and computer-aided manufacturing (CAD/CAM) workflow, which allows the substitution of many materials with digital data. This process requires three fundamental steps represented by the digitalization of an item through a scanner, the editing of the data acquired using a software, and the manufacturing technology to transform the digital data into a final product, respectively. This narrative review aims to discuss the recent introduction in dentistry of the abovementioned digital workflow. The main advantages and disadvantages of the process will be discussed, along with a brief description of the possible applications on orthodontics.


Author(s):  
A. N. Bozhko

Computer-aided design of assembly processes (Computer aided assembly planning, CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. Intensive research on CAAP has been underway since the 1980s. Meanwhile, specialized design systems were created to provide synthesis of assembly plans and product decompositions into assembly units. Such systems as ASPE, RAPID, XAP / 1, FLAPS, Archimedes, PRELEIDES, HAP, etc. can be given, as an example. These experimental developments did not get widespread use in industry, since they are based on the models of products with limited adequacy and require an expert’s active involvement in preparing initial information. The design tools for the state-of-the-art full-featured CAD/CAM systems (Siemens NX, Dassault CATIA and PTC Creo Elements / Pro), which are designed to provide CAAP, mainly take into account the geometric constraints that the design imposes on design solutions. These systems often synthesize technologically incorrect assembly sequences in which known technological heuristics are violated, for example orderliness in accuracy, consistency with the system of dimension chains, etc.An AssemBL software application package has been developed for a structured analysis of products and a synthesis of assembly plans and decompositions. The AssemBL uses a hyper-graph model of a product that correctly describes coherent and sequential assembly operations and processes. In terms of the hyper-graph model, an assembly operation is described as shrinkage of edge, an assembly plan is a sequence of shrinkages that converts a hyper-graph into the point, and a decomposition of product into assembly units is a hyper-graph partition into sub-graphs.The AssemBL solves the problem of minimizing the number of direct checks for geometric solvability when assembling complex products. This task is posed as a plus-sum two-person game of bicoloured brushing of an ordered set. In the paradigm of this model, the brushing operation is to check a certain structured fragment for solvability by collision detection methods. A rational brushing strategy minimizes the number of such checks.The package is integrated into the Siemens NX 10.0 computer-aided design system. This solution allowed us to combine specialized AssemBL tools with a developed toolkit of one of the most powerful and popular integrated CAD/CAM /CAE systems.


2018 ◽  
Vol 875 ◽  
pp. 71-76
Author(s):  
Victor Kryaskov ◽  
Andrey Vashurin ◽  
Anton Tumasov ◽  
Alexey Vasiliev

This paper is dedicated to the issues of designing of outriggers for avoidance of vehicle tilting during its stability tests. An analysis of existing types of outriggers was done by authors as well as legislative requirements on them. The reliable and well-timed operation of outriggers largely depends on the height of their positioning on a vehicle. In order to determine this important parameter a special methodic of determining the tipping angle of the vehicle with the use of computer-aided design (CAD) was composed by authors. The article also contains some main principles of strength analysis of the structure a very important part of which became the necessity of determination of coefficient of friction between the outrigger sliders and the supporting surface. This coefficient has a direct impact on the value of transverse forces appearing at the ends of outrigger beams.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3819
Author(s):  
Ting-Hsun Lan ◽  
Yu-Feng Chen ◽  
Yen-Yun Wang ◽  
Mitch M. C. Chou

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.


Sign in / Sign up

Export Citation Format

Share Document