scholarly journals Recycling of Rubber Wastes as Fuel and Its Additives

Recycling ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 78
Author(s):  
Ahmed Akbas ◽  
Nor Yuliana Yuhana

Economic, social, and urban developments generally require improvements in the transportation sector, which includes automobiles such as trucks, buses, trailers, airplanes, and even bicycles. All these vehicles use rubber tires. After consumption, these tires become waste, leading to enlarged landfill areas for used tires and implying additional harm to the environment. This review summarizes the growth of rubber recycling application and the sustainability of using waste rubber in the construction field. Furthermore, we provide methods to convert rubber waste to fuel or fuel additives by using tire-derived fuel and concentrate to pyrolysis, which are environmentally friendly and efficient ways. The related parameters such as temperature, pressure, and feedstock composition were studied. Most research papers observed that 500 °C is the optimal temperature at atmospheric pressure in the presence of a specific type of catalyst to improve pyrolysis rate, oil yield, and quality.

2006 ◽  
Vol 12 (3) ◽  
pp. 159-163
Author(s):  
Mateja Primozic ◽  
Maja Habulin ◽  
Muzafera Paljevac ◽  
Zeljko Knez

The enzyme-catalyzed hydrolysis of carboxy-methyl cellulose (CMC) was performed in three different types of reactors; in a batch stirred-tank reactor (BSTR) operating at atmospheric pressure, in a high-pressure batch stirred-tank reactor (HP BSTR) and in a high-pressure continuous tubular-membrane reactor (HP CTMR). In the high-pressure reactors aqueous SC CO2 was used as the reaction medium. The aim of our research was optimization of the reaction parameters for reaction performance. All the reactions were catalyzed by cellulase from Humicola insolens. Glucose production in the high-pressure batch stirred-tank reactor was faster than in the BSTR at atmospheric pressure. The optimal temperature for the reaction performed in the BSTR at atmospheric pressure was 30?C, while the optimal temperature for the reaction performed in SC CO2 was 32?C. The influence of the application of tubular ceramic membranes in the high-pressure reaction system was studied on the model reaction of CMC hydrolysis at atmospheric pressure and in SC CO2. The reaction was catalyzed by cellulase from Humicola insolens covalently linked to the surface of the ceramic membrane. The hydrolysis of CMC in SC CO2 and at atmospheric pressure was performed for a long time period. The reaction carried out in SC CO2 was more productive than the reaction performed at atmospheric pressure.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 424 ◽  
Author(s):  
Ahmad ◽  
Cawood ◽  
Iqbal ◽  
Ariño ◽  
Batool ◽  
...  

Carrots are a multi-nutritional food source. They are an important root vegetable, rich in natural bioactive compounds, which are recognised for their nutraceutical effects and health benefits. This review summarises the occurrence, biosynthesis, factors affecting concentration, and health benefits of phytochemicals found in Daucus carota. Two hundred and fifty-five articles including original research papers, books, and book chapters were analysed, of which one hundred and thirty articles (most relevant to the topic) were selected for writing the review article. The four types of phytochemicals found in carrots, namely phenolics, carotenoids, polyacetylenes, and ascorbic acid, were summarised. These chemicals aid in the risk reduction of cancer and cardiovascular diseases due to their antioxidant, anti-inflammatory, plasma lipid modification, and anti-tumour properties. Numerous factors influence the amount and type of phytochemicals present in carrots. Genotype (colour differences) plays an important role; high contents of α and β-carotene are present in orange carrots, lutein in yellow carrots, lycopene in red carrots, anthocyanins in the root of purple carrots, and phenolic compounds abound in black carrots. Carotenoids range between 3.2 mg/kg and 170 mg/kg, while vitamin C varies from 21 mg/kg to 775 mg/kg between cultivars. Growth temperatures of carrots influence the level of the sugars, carotenoids, and volatile compounds, so that growing in cool conditions results in a higher yield and quality of carrots, while higher temperatures would increase terpene synthesis, resulting in carrots with a bitter taste. It is worthwhile to investigate the cultivation of different genotypes under various environmental conditions to increase levels of phytochemicals and enhance the nutritional value of carrot, along with the valorisation of carrot by-products.


2020 ◽  
Vol 10 (3) ◽  
pp. 5632-5636
Author(s):  
S. Gurkan Aydin ◽  
O. Polat ◽  
A. Ozgen ◽  
E. Turali

Oxygenated fuel additives are added to gasoline in order to reduce the gases released from vehicle engines, to increase the octane number, and to expand the use of renewable resources. In this study, molecular and geometric analysis of oxygenated fuel additives was conducted theoretically and the energy values of optimized structures were calculated. The effect of molecular energy and the bond structure between C, H and O on the chemical and physical properties of some oxygen fuel additives were investigated. The obtained results will form the basis for future studies in obtaining more environmentally friendly fuels.


2019 ◽  
Vol 53 (4) ◽  
pp. 1893-1904 ◽  
Author(s):  
Nataša Hojnik ◽  
Martina Modic ◽  
Yuan Ni ◽  
Gregor Filipič ◽  
Uroš Cvelbar ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3748 ◽  
Author(s):  
Vadi ◽  
Bayindir ◽  
Colak ◽  
Hossain

Electric vehicles are the latest form of technology developed to create an environmentally friendly transportation sector and act as an additional energy source to minimize the demand on the grid. This comprehensive research review presents the vehicle-to-grid (V2G) and the vehicle-to-home (V2H) technologies, along with their structures, components, power electronic topologies, communication standards, socket structure, and charging methods. In addition, the charging topologies in V2G and V2H are given in detail. This study is planned as a useful guide for future studies that can be achieved in that it compares the results obtained and analyzes the studies in the literature, finding the advantages and disadvantages of charging topologies in V2G and V2H.


2018 ◽  
Vol 33 (1) ◽  
pp. 636-644 ◽  
Author(s):  
Natalia K. Kondrasheva ◽  
Viacheslav A. Rudko ◽  
Dmitriy O. Kondrashev ◽  
Renat R. Gabdulkhakov ◽  
Ivan O. Derkunskii ◽  
...  

2011 ◽  
Vol 124 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Vladimir Totolin ◽  
Majid Sarmadi ◽  
Sorin O. Manolache ◽  
Ferencz S. Denes

2019 ◽  
Vol 13 (6) ◽  
pp. 565-588 ◽  
Author(s):  
K. Formela ◽  
A. Hejna ◽  
L. Zedler ◽  
X. Colom ◽  
J. Canavate

2020 ◽  
Author(s):  
Cristian Valdés ◽  
Camila Hernández ◽  
Rodrigo Morales-Vera ◽  
Rodrigo Andler

Abstract Currently, recycling or degradation treatments for tires are an enormous challenge. Despite efforts to dispose of or recycle it, rubber waste is increasing year by year worldwide. To create a rubber-recycling system, several researchers have proposed tire desulfurization. In this study, we compare two methods: one biological, using Acidobacillus ferroxidans in shake 250 mL flask experiments, and one chemical using, for the first time, microwaves and an aqueous solution. The results of these methods were analyzed through sulfate quantification, cross-linking differences, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy with energy disperse spectroscopy (SEM-EDS). We observed that the amount of sulfates generated by the chemical system was 56 mg / L, which was 10-times higher than the biological system, which generated 5.3 mg / L. Similarly, after cross-linking studies, a 36% higher decrease after the chemical treatment was observed. When using FTIR analysis, the disappearance of characteristic bands corresponding to functional groups containing sulfur bonds was observed by treating the sample with both desulfurization mechanisms. Morphological changes on the rubber surface structure was also demonstrated by SEM-EDS analysis with the appearance of holes, cracks and changes in the porosity of the material. This work analyzed two different non-aggressive desulfurization mechanisms that might be used as sustainable methods for rubber recycling processes.


Sign in / Sign up

Export Citation Format

Share Document