scholarly journals A* Based Routing and Scheduling Modules for Multiple AGVs in an Industrial Scenario

Robotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 72
Author(s):  
Joana Santos ◽  
Paulo M. Rebelo ◽  
Luis F. Rocha ◽  
Pedro Costa ◽  
Germano Veiga

A multi-AGV based logistic system is typically associated with two fundamental problems, critical for its overall performance: the AGV’s route planning for collision and deadlock avoidance; and the task scheduling to determine which vehicle should transport which load. Several heuristic functions can be used according to the application. This paper proposes a time-based algorithm to dynamically control a fleet of Autonomous Guided Vehicles (AGVs) in an automatic warehouse scenario. Our approach includes a routing algorithm based on the A* heuristic search (TEA*—Time Enhanced A*) to generate free-collisions paths and a scheduling module to improve the results of the routing algorithm. These modules work cooperatively to provide an efficient task execution time considering as basis the routing algorithm information. Simulation experiments are presented using a typical industrial layout for 10 and 20 AGVs. Moreover, a comparison with an alternative approach from the state-of-the-art is also presented.

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 567
Author(s):  
Donghun Yang ◽  
Kien Mai Mai Ngoc ◽  
Iksoo Shin ◽  
Kyong-Ha Lee ◽  
Myunggwon Hwang

To design an efficient deep learning model that can be used in the real-world, it is important to detect out-of-distribution (OOD) data well. Various studies have been conducted to solve the OOD problem. The current state-of-the-art approach uses a confidence score based on the Mahalanobis distance in a feature space. Although it outperformed the previous approaches, the results were sensitive to the quality of the trained model and the dataset complexity. Herein, we propose a novel OOD detection method that can train more efficient feature space for OOD detection. The proposed method uses an ensemble of the features trained using the softmax-based classifier and the network based on distance metric learning (DML). Through the complementary interaction of these two networks, the trained feature space has a more clumped distribution and can fit well on the Gaussian distribution by class. Therefore, OOD data can be efficiently detected by setting a threshold in the trained feature space. To evaluate the proposed method, we applied our method to various combinations of image datasets. The results show that the overall performance of the proposed approach is superior to those of other methods, including the state-of-the-art approach, on any combination of datasets.


2006 ◽  
Vol 14 (2) ◽  
pp. 223-253 ◽  
Author(s):  
Frédéric Lardeux ◽  
Frédéric Saubion ◽  
Jin-Kao Hao

This paper presents GASAT, a hybrid algorithm for the satisfiability problem (SAT). The main feature of GASAT is that it includes a recombination stage based on a specific crossover and a tabu search stage. We have conducted experiments to evaluate the different components of GASAT and to compare its overall performance with state-of-the-art SAT algorithms. These experiments show that GASAT provides very competitive results.


2012 ◽  
Vol 424-425 ◽  
pp. 607-611
Author(s):  
Xue Zhen Shen ◽  
Xin Guo Tang

A HIP multicast mode; based dynamic multicast routing algorithm (HIPDMR) was brought out and network model was established to describe and simplify problem to be researched. HIPDMR used Bellman-Ford as routing search algorithm, which can determine dynamic multicast routing with minimum hop number and overhead while meet constraints of bandwidth, delay, jitter and packet loss rate. Simulation experiments result show that HIPDMR can build dynamic multicast routing under constraints of multiple QoS comparing with algorithms that not considering QoS assuming network node output link capacity be equal


Author(s):  
Ryo Kuroiwa ◽  
Alex Fukunaga

Although symbolic bidirectional search is successful in optimal classical planning, state-of-the-art satisficing planners do not use bidirectional search. Previous bidirectional search planners for satisficing planning behaved similarly to a trivial portfolio, which independently executes forward and backward search without the desired ``meet-in-the-middle'' behavior of bidirectional search where the forward and backward search frontiers intersect at some point relatively far from the forward and backward start states. In this paper, we propose Top-to-Top Bidirectional Search (TTBS), a new bidirectional search strategy with front-to-front heuristic evaluation. We show that TTBS strongly exhibits ``meet-in-the-middle'' behavior and can solve instances solved by neither forward nor backward search on a number of domains.


2021 ◽  
Vol 10 (8) ◽  
pp. 571
Author(s):  
Sumit Mishra ◽  
Nikhil Singh ◽  
Devanjan Bhattacharya

Short distance travel and commute being inevitable, safe route planning in pandemics for micro-mobility, i.e., cycling and walking, is extremely important for the safety of oneself and others. Hence, we propose an application-based solution using COVID-19 occurrence data and a multi-criteria route planning technique for cyclists and pedestrians. This study aims at objectively determining the routes based on various criteria on COVID-19 safety of a given route while keeping the user away from potential COVID-19 transmission spots. The vulnerable spots include places such as a hospital or medical zones, contained residential areas, and roads with a high connectivity and influx of people. The proposed algorithm returns a multi-criteria route modeled on COVID-19-modified parameters of micro-mobility and betweenness centrality considering COVID-19 avoidance as well as the shortest available safe route for user ease and shortened time of outside environment exposure. We verified our routing algorithm in a part of Delhi, India, by visualizing containment zones and medical establishments. The results with COVID-19 data analysis and route planning suggest a safer route in the context of the coronavirus outbreak as compared to normal navigation and on average route extension is within 8%–12%. Moreover, for further advancement and post-COVID-19 era, we discuss the need for adding open data policy and the spatial system architecture for data usage, as a part of a pandemic strategy. The study contributes new micro-mobility parameters adapted for COVID-19 and policy guidelines based on aggregated contact tracing data analysis maintaining privacy, security, and anonymity.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Dunbo Cai ◽  
Sheng Xu ◽  
Tongzhou Zhao ◽  
Yanduo Zhang

Pruning techniques and heuristics are two keys to the heuristic search-based planning. Thehelpful actionspruning (HAP) strategy andrelaxed-plan-based heuristicsare two representatives among those methods and are still popular in the state-of-the-art planners. Here, we present new analyses on the properties of HAP. Specifically, we show new reasons for which HAP can cause incompleteness of a search procedure. We prove that, in general, HAP is incomplete for planning with conditional effects if factored expansions of actions are used. To preserve completeness, we propose a pruning strategy that is based onrelevance analysisandconfrontation. We will show that bothrelevance analysisandconfrontationare necessary. We call it theconfrontation and goal relevant actionspruning (CGRAP) strategy. However, CGRAP is computationally hard to be exactly computed. Therefore, we suggest practical approximations from the literature.


Author(s):  
Alexander Gelbukh ◽  
José A. Martínez F. ◽  
Andres Verastegui ◽  
Alberto Ochoa

In this chapter, an exhaustive parser is presented. The parser was developed to be used in a natural language interface to databases (NLIDB) project. This chapter includes a brief description of state-of-the-art NLIDBs, including a description of the methods used and the performance of some interfaces. Some of the general problems in natural language interfaces to databases are also explained. The exhaustive parser was developed, aiming at improving the overall performance of the interface; therefore, the interface is also briefly described. This chapter also presents the drawbacks discovered during the experimental tests of the parser, which show that it is unsuitable for improving the NLIDB performance.


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 98 ◽  
Author(s):  
Tariq Ahmad ◽  
Allan Ramsay ◽  
Hanady Ahmed

Assigning sentiment labels to documents is, at first sight, a standard multi-label classification task. Many approaches have been used for this task, but the current state-of-the-art solutions use deep neural networks (DNNs). As such, it seems likely that standard machine learning algorithms, such as these, will provide an effective approach. We describe an alternative approach, involving the use of probabilities to construct a weighted lexicon of sentiment terms, then modifying the lexicon and calculating optimal thresholds for each class. We show that this approach outperforms the use of DNNs and other standard algorithms. We believe that DNNs are not a universal panacea and that paying attention to the nature of the data that you are trying to learn from can be more important than trying out ever more powerful general purpose machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document