scholarly journals A Novel Index for Impervious Surface Area Mapping: Development and Validation

2018 ◽  
Vol 10 (10) ◽  
pp. 1521 ◽  
Author(s):  
Yugang Tian ◽  
Hui Chen ◽  
Qingju Song ◽  
Kun Zheng

The distribution and dynamic changes in impervious surface areas (ISAs) are crucial to understanding urbanization and its impact on urban heat islands, earth surface energy balance, hydrological cycles, and biodiversity. Remotely sensed data play an essential role in ISA mapping, and numerous methods have been developed and successfully applied for ISA extraction. However, the heterogeneity of ISA spectra and the high similarity of the spectra between ISA and soil have not been effectively addressed. In this study, we selected data from the US Geological Survey (USGS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral libraries as samples and used blue and near-infrared bands as characteristic bands based on spectral analysis to propose a novel index, the perpendicular impervious surface index (PISI). Landsat 8 operational land imager data in four provincial capital cities of China (Wuhan, Shenyang, Guangzhou, and Xining) were selected as test data to examine the performance of the proposed PISI in four different environments. Threshold analysis results show that there is a significant positive correlation between PISI and the proportion of ISA, and threshold can be adjusted according to different needs with different accuracy. Furthermore, comparative analyses, which involved separability analysis and extraction precision analysis, were conducted among PISI, biophysical composition index (BCI), and normalized difference built-up index (NDBI). Results indicate that PISI is more accurate and has better separability for ISA and soil as well as ISA and vegetation in the ISA extraction than the BCI and NDBI under different conditions. The accuracy of PISI in the four cities is 94.13%, 96.50%, 89.51%, and 93.46% respectively, while BCI and NDBI showed accuracy of 77.53%, 93.49%, 78.02%, and 84.03% and 58.25%, 57.53%, 77.77%, and 64.83%, respectively. In general, the proposed PISI is a convenient index to extract ISA with higher accuracy and better separability for ISA and soil as well as ISA and vegetation. Meanwhile, as PISI only uses blue and near-infrared bands, it can be used in a wider variety of remote sensing images.

2019 ◽  
Vol 33 (2) ◽  
pp. 162-172
Author(s):  
Iswari Nur Hidayati ◽  
R Suharyadi

Impervious surface is one of the major land cover types of urban and suburban environment. Conversion of rural landscapes and vegetation area to urban and suburban land use is directly related to the increase of the impervious surface area. The impervious surface expansion is straight-lined with decreasing green spaces in urban areas. Impervious surface is one of indicator for detecting urban heat islands. This study compares various indices for mapping impervious surfaces using Landsat 8 OLI imagery by optimizing the different spectral characteristics of Landsat 8 OLI imagery. The research objectives are (1) to apply various indices for impervious surface mapping and (2) identifies impervious surfaces in urban areas based on multiple indices and provide recommendations and find the best index for mapping impervious surface in urban areas. In addition to utilizing the index, land use supervised classification method, maximum likelihood classification used for extracting built-up, and non-built-up areas. Accuracy assessment of this research used field data collection as primary data for calculating kappa coefficient, producer accuracy, and user accuracy. The study can also be extended to find the land surface temperature and correlate the impervious surface extraction data with urban heat islands.


Author(s):  
Дмитрий Владимирович Сарычев ◽  
Ирина Владимировна Попова ◽  
Семен Александрович Куролап

Рассмотрены вопросы мониторинга теплового загрязнения окружающей среды в городах. Представлена методика отбора спектрозональных спутниковых снимков, их обработки и интерпретации полученных результатов. Для оценки городского острова тепла были использованы снимки с космического аппарата Landsat 8 TIRS. На их основе построены карты пространственной структуры острова тепла города Воронежа за летний и зимний периоды. Определены тепловые аномалии и выявлено 11 основных техногенных источников теплового загрязнения в г. Воронеже, установлена их принадлежность к промышленным зонам предприятий, а также к очистным гидротехническим сооружениям. Поверхностные температуры данных источников в среднем были выше фоновых температур приблизительно на 6° зимой и на 15,5° С летом. Синхронно со спутниковой съемкой были проведены наземные контрольные тепловизионные измерения температур основных подстилающих поверхностей в г. Воронеже. Полученные данные показали высокую сходимость космических и наземных измерений, на основании чего сделан вывод о надежности используемых данных дистанционного зондирования Земли в мониторинговых наблюдениях теплового загрязнения городской среды. Результаты работ могут найти применение в городском планировании и медицинской экологии. The study deals with the remote sensing and monitoring of urban heat islands. We present a methodology of multispectral satellite imagery selection and processing. The study bases on the freely available Landsat 8 TIRS data. We used multitemporal thermal band combinations to make maps of the urban heat island of Voronezh (Russia) during summer and winter periods. That let us identify 11 artificial sources of heat in Voronezh. All of them turned out to be allocated within industrial zones of plants and water treatment facilities. Land surface temperatures (LST) of these sources were approximately 6° and 15.5° C above the background temperatures in winter and summer, respectively. To prove the remotely sensed temperatures we conducted ground control measurements of LST of different surface types at the satellite revisit moments. Our results showed a significant correlation between the satellite and ground-based measurements, so the maps we produced in this study should be robust. They are of use in urban planning and medical ecology studies.


2020 ◽  
Vol 172 ◽  
pp. 03006
Author(s):  
Andrea Rosati ◽  
Michele Fedel ◽  
Stefano Rossi

For building applications, coatings are needed in order to obtain an attractive appearance and protection against the outdoor environments. Buildings are responsible for consumption of cooling energy. Cool coatings applied over buildings surface provide an effective solution for passive cooling of building indoors and influencing local outdoor microclimate, mitigating urban heat islands effect (UHIE). Cool coatings have to resistant to weathering and ageing. For this reason, we developed near infrared (NIR) reflective pigments with the aim to add in binder and obtaining a cool coating. A series of pigments displaying YIn0.9Mn0.1O3–ZnO stoichiometry was synthesized by sol-gel route. The dried gel precursor was calcined at different temperatures for 2h (650°C, 800°C and 850°C) to observe the formation of a light brown pigment and two different blue shades. Precursors and calcined final pigments were characterized by using physicochemical analyses. The colour of pigments was studied using CIE-2004 L*a*b* colorimetric method. The cooling effect of pigments and their thermal stability were confirmed by NIR reflectance measurements and TGA respectively.


Author(s):  
A. Krtalić ◽  
A. Kuveždić Divjak ◽  
K. Čmrlec

Abstract. This study aims to assess surface urban heat islands (SUHIs) pattern over the city of Zagreb, Croatia, based on satellite (optical and thermal) remote sensing data. The spatio-temporal identification of SUHIs is analysed using the 12 sets of Landsat 8 imagery acquired during 2017 (in each month of the year). Vegetation cover within the city boundaries is extracted by using Principal Component Analysis (PCA) data fusion method on calculated three vegetation indices (VI): Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Ratio Vegetation Index (RVI) for each set of bands. The first principal component was used to compute the land surface temperature (LST) and deductive Environmental Criticality Index (ECI). As expected, the relationship between LST and all VI scores shows a negative correlation and is most negative with RVI. The environmentally critical areas and the patterns of seasonal variations of the SUHIs in the city of Zagreb were identified based on the LST, ECI and vegetation cover. The city centre, an industrial area in the eastern part and an area with shopping centers and commercial buildings in the western part of the city were identified as the most critical areas.


Author(s):  
C. A. Alcantara ◽  
J. D. Escoto ◽  
A. C. Blanco ◽  
A. B. Baloloy ◽  
J. A. Santos ◽  
...  

Abstract. Urbanization has played an important part in the development of the society, yet it is accompanied by environmental concerns including the increase of local temperature compared to its immediate surroundings. The latter is known as Urban Heat Islands (UHI). This research aims to model UHI in Quezon City based on Land Surface Temperature (LST) estimated from Landsat 8 data. Geospatial processing and analyses were performed using Google Earth Engine, ArcGIS, GeoDa, and SAGA GIS. Based on Urban Thermal Field Variance Index (UTFVI) and the normalized mean per barangay (village), areas with strong UHI intensities were mapped and characterized. high intensity UHIs are observed mostly in areas with high Normalized Difference Built-up Index (NDBI) like the residential regions while the weak intensity UHIs are noticed in areas with high Normalized Difference Vegetation Index (NDVI) near the La Mesa Reservoir. In the OLS regression model, around 69% of LST variability is explained by Surface Albedo (SA), Sky View Factor (SVF), Surface Area to Volume Ratio (SVR), Solar Radiation (SR), NDBI and NDVI. OLS yield relatively high residuals (RMSE = 1.67) and the residuals are not normally distributed. Since LST is non-stationary, Geographically Weighted Regression (GWR) regression was conducted, proving normally and randomly distributed residuals (average RMSE = 0.26).


2017 ◽  
Vol 39 (1) ◽  
pp. 89 ◽  
Author(s):  
Elis Dener Lima Alves

The cooling effects of urban parks and green areas, which form the “Park Cool Island” (PCI) can help decrease the surface temperature and mitigate the effects of urban heat islands (UHI). Therefore, the objective of this research was to know the temporal variability of PCI intensity, as well as analyze the factors that determines it and propose an equation to predict the PCI intensity in Iporá, Goiás State, Brazil. To this purpose, the PCI intensity values were obtained using the Landsat-8 satellite (band 10), and then correlated with the NDVI and the LAI, in which proposes equations through multiple linear regression to estimate the PCI intensity. The results indicated that: 1) the greater the distance of the natural area, greater the surface temperature; 2) there is a great seasonality in PCI, in which the intensity of PCI is much higher in the spring (or close to it); 3) the relationship between NDVI and LAI variables, showed good coefficients of determination; 4) the equations for the buffer of 200 and 500 m, had low RMSE with high coefficients of determination (r2 = 0.924 and r2 = 0.957 respectively). 


2018 ◽  
Vol 10 (12) ◽  
pp. 1965 ◽  
Author(s):  
Nguyen Thanh Hoan ◽  
Yuei-An Liou ◽  
Kim-Anh Nguyen ◽  
Ram Sharma ◽  
Duy-Phien Tran ◽  
...  

Hanoi City of Vietnam changes quickly, especially after its state implemented its Master Plan 2030 for the city’s sustainable development in 2011. Then, a number of environmental issues are brought up in response to the master plan’s implementation. Among the issues, the Urban Heat Island (UHI) effect that tends to cause negative impacts on people’s heath becomes one major problem for exploitation to seek for mitigation solutions. In this paper, we investigate the land surface thermal signatures among different land-use types in Hanoi. The surface UHI (SUHI) that characterizes the consequences of the UHI effect is also studied and quantified. Note that our SUHI is defined as the magnitude of temperature differentials between any two land-use types (a more general way than that typically proposed in the literature), including urban and suburban. Relationships between main land-use types in terms of composition, percentage coverage, surface temperature, and SUHI in inner Hanoi in the recent two years 2016 and 2017, were proposed and examined. High correlations were found between the percentage coverage of the land-use types and the land surface temperature (LST). Then, a regression model for estimating the intensity of SUHI from the Landsat 8 imagery was derived, through analyzing the correlation between land-use composition and LST for the year 2017. The model was validated successfully for the prediction of the SUHI for another hot day in 2016. For example, the transformation of a chosen area of 161 ha (1.61 km2) from vegetation to built-up between two years, 2016 and 2017, can result in enhanced thermal contrast by 3.3 °C. The function of the vegetation to lower the LST in a hot environment is evident. The results of this study suggest that the newly developed model provides an opportunity for urban planners and designers to develop measures for adjusting the LST, and for mitigating the consequent effects of UHIs by managing the land use composition and percentage coverage of the individual land-use type.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1538
Author(s):  
Giuseppe Mazzeo ◽  
Micheal S. Ramsey ◽  
Francesco Marchese ◽  
Nicola Genzano ◽  
Nicola Pergola

The Normalized Hotspot Indices (NHI) tool is a Google Earth Engine (GEE)-App developed to investigate and map worldwide volcanic thermal anomalies in daylight conditions, using shortwave infrared (SWIR) and near infrared (NIR) data from the Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel 2 and Landsat 8 satellites. The NHI tool offers the possibility of ingesting data from other sensors. In this direction, we tested the NHI algorithm for the first time on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. In this study, we show the results of this preliminary implementation, achieved investigating the Kilauea (Hawaii, USA), Klyuchevskoy (Kamchatka; Russia), Shishaldin (Alaska; USA), and Telica (Nicaragua) thermal activities of March 2000–2008. We assessed the NHI detections through comparison with the ASTER Volcano Archive (AVA), the manual inspection of satellite imagery, and the information from volcanological reports. Results show that NHI integrated the AVA observations, with a percentage of unique thermal anomaly detections ranging between 8.8% (at Kilauea) and 100% (at Shishaldin). These results demonstrate the successful NHI exportability to ASTER data acquired before the failure of SWIR subsystem. The full ingestion of the ASTER data collection, available in GEE, within the NHI tool allows us to develop a suite of multi-platform satellite observations, including thermal anomaly products from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), which could support the investigation of active volcanoes from space, complementing information from other systems.


Author(s):  
А.К. Матузко ◽  
О.Е. Якубайлик

Явление острова тепла в поле приземной температуры воздуха характерно любым городам и населенным пунктам; чем больше поселок или город, тем больше, как правило, разница температур внутри него и за его пределами. Интенсивность городских островов тепла весьма сильно зависит от особенностей рельефа. В условиях сложного рельефа на развитие острова тепла влияют различные локальные циркуляции. Исследование направлено на решение задач, связанных с определением температурных аномалий, которые возникают в течении года и определить системность их возникновения, используя многолетние спутниковые данные. Задача будет рассмотрена на примере горда Красноярска, по спутниковым снимкам Landsat-8 с 2013 по 2020 год. Сформированные на основе многовременного анализа границы городских островов тепла содержат информацию о характеристиках объектов, влияющих на интенсивность их теплового излучения. Причины возникновения острова тепла разделяются на антропогенный или природный характер, так же наблюдается динамика изменения границ температурных аномалий в исследуемый период. Наблюдаются переменные и устойчивые острова тепла на территории города. Переменные острова тепла образовались в новых местах городской территории, где ранее не отмечались повышенные температуры земной поверхности, чаще всего это связано со строительством новых зданий (торговых центров, спортивных сооружений, жилых домов). Полученные данные могут быть использованы для территориального планирования, эколого-географических обследований, в том числе по оценке экологической обстановки. The phenomenon of a heat island in the field of surface air temperature is characteristic of any cities and settlements; the larger the village or city, the greater, as a rule, the temperature difference inside and outside it. The intensity of urban heat islands is highly dependent on the features of the relief. In conditions of a difficult topography, the development of the heat island is influenced by various local circulations. The study is aimed at solving problems related to the determination of temperature anomalies that occur during the year and to determine the consistency of their occurrence, using long-term satellite data. The task will be considered on the example of Krasnoyarsk city, based on Landsat-8 satellite series from 2013 to 2020. The boundaries of urban heat islands formed on the basis of multi-time analysis contain information on the characteristics of objects that affect the intensity of their thermal radiation. The reasons for the appearance of a heat island are divided into anthropogenic or natural ones, as well as the dynamics of changes in the boundaries of temperature anomalies in the period under study. There are variable and stable heat islands in the city. Variable heat islands formed in new places of the urban area, where previously there were no elevated temperatures of the earth's surface, most often this is associated with the construction of new buildings (shopping centers, sports facilities, residential buildings). The data obtained can be used for territorial planning, ecological and geographical surveys, including assessing the ecological situation.


Sign in / Sign up

Export Citation Format

Share Document