scholarly journals Storm Event to Seasonal Evolution of Nearshore Bathymetry Derived from Shore-Based Video Imagery

2019 ◽  
Vol 11 (5) ◽  
pp. 519 ◽  
Author(s):  
Erwin Bergsma ◽  
Daniel Conley ◽  
Mark Davidson ◽  
Tim O'Hare ◽  
Rafael Almar

Coastal evolution occurs on a wide range of time-scales, from storms, seasonal and inter-annual time-scales to longer-term adaptation to changing environmental conditions. Measuring campaigns typically either measure morphological evolution on a short-time scale (days) with high frequency (hourly) or long-time scales (years) but intermittently (monthly). This leaves an important observational gap that limits morphological variability assessments. Traditional echo sounding measurements on this long time-scale and high-frequency sampling require a significant financial injection. Shore-based video systems with high spatiotemporal resolution can bridge this gap. For the first time, hourly Kalman filtered video-derived bathymetries covering 1.5 years of morphological evolution with an hourly resolution obtained at Porhtowan, UK are presented. Here, the long-term hourly dataset is used and aims to show its added value for, and provide an in-depth, morphological analyses with unprecedented temporal resolution. The time-frame includes calm and extreme (storm) wave conditions in a macro-tidal environment. The video-derived bathymetries allow hourly beach state classification while before this was not possible due to the dependence on foam patterns of wave breaking (e.g., saturation during storms). The study period covers extreme storm erosion during the most energetic winter season in 60 years (2013–2014). Recovery of the beach takes place on several time-scales: (1) an immediate initial recovery after the storm season (first 2 months), (2) limited recovery during low energetic summer conditions and (3) accelerated recovery as the wave conditions picked up in the subsequent fall—under wave conditions that are typically erosive. The video-derived bathymetries are shown to be effective in determining bar-positions, outer-bar three-dimensionality and volume analyses with an unprecedented hourly temporal resolution.

2019 ◽  
Vol 7 (3) ◽  
pp. 78 ◽  
Author(s):  
Arjen Luijendijk ◽  
Matthieu Schipper ◽  
Roshanka Ranasinghe

Thirty one percent (31%) of the world’s coastline consists of sandy beaches and dunes that form a natural defense protecting the hinterland from flooding. A common measure to mitigate erosion along sandy beaches is the implementation of sand nourishments. The design and acceptance of such a mitigating measure require information on the expected evolution at time scales from storms to decades. Process-based morphodynamic models are increasingly applied, together with morphodynamic acceleration techniques, to obtain detailed information on this wide scale of ranges. This study shows that techniques for the acceleration of the morphological evolution can have a significant impact on the simulated evolution and dispersion of sandy interventions. A calibrated Delft3D model of the Sand Engine mega-nourishment is applied to compare different acceleration techniques, focusing on accuracy and computational times. Results show that acceleration techniques using representative (schematized) wave conditions are not capable of accurately reproducing the morphological response in the first two years. The best reproduction of the morphological behavior of the first five years is obtained by the brute force simulations. Applying input filtering and a compression factor provides similar accuracy yet with a factor five gain in computational cost. An attractive method for the medium to long time scales, which further reduces computational costs, is a method that uses representative wave conditions based on gross longshore transports, while showing similar results as the benchmark simulation. Erosional behavior is captured well in all considered techniques with variations in volumes of about 1 million m 3 after three decades. The spatio-temporal variability of the predicted alongshore and cross-shore distribution of the morphological evolution however have a strong dependency on the selected acceleration technique. A new technique, called ’brute force merged’, which incorporates the full variability of the wave climate, provides the optimal combination of phenomenological accuracy and computational efficiency (a factor of 20 faster than the benchmark brute force technique) at both the short and medium to long time scales. This approach, which combines realistic time series and the mormerge technique, provides an attractive and flexible method to efficiently predict the evolution of complex sandy interventions at time scales from hours to decades.


2019 ◽  
Vol 76 (5) ◽  
pp. 1265-1287 ◽  
Author(s):  
Arjun Jagannathan ◽  
Kraig Winters ◽  
Laurence Armi

Abstract Uniformly stratified flows approaching long and dynamically tall ridges develop two distinct flow components over disparate time scales. The fluid upstream and below a “blocking level” is stagnant in the limit of an infinite ridge and flows around the sides when the ridge extent is finite. The streamwise half-width of the obstacle at the blocking level arises as a natural inner length scale for the flow, while the excursion time over this half-width is an associated short time scale for the streamwise flow evolution. Over a longer time scale, low-level horizontal flow splitting leads to the establishment of an upstream layerwise potential flow beneath the blocking level. We demonstrate through numerical experiments that for sufficiently long ridges, crest control and streamwise asymmetry are seen on both the short and long time scales. On the short time scale, upstream blocking is established quickly and the flow is well described as a purely infinite-ridge overflow. Over the long time scale associated with flow splitting, low-level flow escapes around the sides, but the overflow continues to be hydraulically controlled and streamwise asymmetric in the neighborhood of the crest. We quantify this late-time overflow by estimating its volumetric transport and then briefly demonstrate how this approach can be extended to predict the overflow across nonuniform ridge shapes.


2020 ◽  
Vol 497 (1) ◽  
pp. 698-725 ◽  
Author(s):  
Sandro Tacchella ◽  
John C Forbes ◽  
Neven Caplar

ABSTRACT A key uncertainty in galaxy evolution is the physics regulating star formation, ranging from small-scale processes related to the life-cycle of molecular clouds within galaxies to large-scale processes such as gas accretion on to galaxies. We study the imprint of such processes on the time-variability of star formation with an analytical approach tracking the gas mass of galaxies (‘regulator model’). Specifically, we quantify the strength of the fluctuation in the star-formation rate (SFR) on different time-scales, i.e. the power spectral density (PSD) of the star-formation history, and connect it to gas inflow and the life-cycle of molecular clouds. We show that in the general case the PSD of the SFR has three breaks, corresponding to the correlation time of the inflow rate, the equilibrium time-scale of the gas reservoir of the galaxy, and the average lifetime of individual molecular clouds. On long and intermediate time-scales (relative to the dynamical time-scale of the galaxy), the PSD is typically set by the variability of the inflow rate and the interplay between outflows and gas depletion. On short time-scales, the PSD shows an additional component related to the life-cycle of molecular clouds, which can be described by a damped random walk with a power-law slope of β ≈ 2 at high frequencies with a break near the average cloud lifetime. We discuss star-formation ‘burstiness’ in a wide range of galaxy regimes, study the evolution of galaxies about the main sequence ridgeline, and explore the applicability of our method for understanding the star-formation process on cloud-scale from galaxy-integrated measurements.


2016 ◽  
Vol 46 (9) ◽  
pp. 2785-2805 ◽  
Author(s):  
Anirban Sinha ◽  
Ryan P. Abernathey

AbstractStratification in the Southern Ocean is determined primarily by a competition between westerly wind-driven upwelling and baroclinic eddy transport. This study investigates the time scales of equilibration of the Southern Ocean in response to changing winds through an idealized channel model. An analytical framework describing the energetic pathways between wind input, available potential energy (APE), eddy kinetic energy (EKE), and dissipation provides a simple theory of the phase and amplitude response to oscillating wind stress. The transient ocean response to variable winds lies between the two limits of Ekman response (high frequency), characterized by the isopycnal slope responding directly to wind stress, and “eddy saturation” (low frequency), wherein a large fraction of the anomalous wind work goes into mesoscale eddies. The crossover time scale is the time scale of meridional eddy diffusive transport across the Antarctic Circumpolar Current (ACC) front. For wind variability with a period of 3 months (high-frequency forcing), the relative conversion of wind work to APE/EKE is 11, while for a period of 16 years (low-frequency forcing), the relative conversion to APE/EKE reduces to 3. The system’s frequency response is characterized by a complex transfer function. Both the phase and amplitude response of EKE and APE predicted by the linear analytic framework are verified using multiple ensemble experiments in an eddy-resolving (4-km horizontal resolution) isopycnal coordinate model. The results from the numerical experiments show agreement with the linear theory and can be used to explain certain features observed in previous modeling studies and observations.


2019 ◽  
Vol 492 (2) ◽  
pp. 1914-1918
Author(s):  
Yury A Nagovitsyn ◽  
Aleksandra A Osipova

ABSTRACT The IDV index of geomagnetic activity is used by many researchers as a proxy of the interplanetary magnetic field (IMF) strength B. Using the original multiscale regression (MSR) method based on wavelet transformation, we obtained a long series of B values starting from 1845. Then, based on the new 2.0 versions of the sunspot number and group sunspot number and using MSR method and this series as a reference, we reconstructed IMF strength B starting from 1610. Further extension of the reconstruction is associated with radiocarbon reconstructions of solar activity at a time-scale of up to several millennia. It is shown that in the last 3200 yr the IMF strength has been experiencing a downward trend of −(0.39 ± 0.17) · 10−3 nT· yr−1.


2011 ◽  
Vol 24 (23) ◽  
pp. 6210-6226 ◽  
Author(s):  
S. Zhang

Abstract A skillful decadal prediction that foretells varying regional climate conditions over seasonal–interannual to multidecadal time scales is of societal significance. However, predictions initialized from the climate-observing system tend to drift away from observed states toward the imperfect model climate because of the model biases arising from imperfect model equations, numeric schemes, and physical parameterizations, as well as the errors in the values of model parameters. Here, a simple coupled model that simulates the fundamental features of the real climate system and a “twin” experiment framework are designed to study the impact of initialization and parameter optimization on decadal predictions. One model simulation is treated as “truth” and sampled to produce “observations” that are assimilated into other simulations to produce observation-estimated states and parameters. The degree to which the model forecasts based on different estimates recover the truth is an assessment of the impact of coupled initial shocks and parameter optimization on climate predictions of interests. The results show that the coupled model initialization through coupled data assimilation in which all coupled model components are coherently adjusted by observations minimizes the initial coupling shocks that reduce the forecast errors on seasonal–interannual time scales. Model parameter optimization with observations effectively mitigates the model bias, thus constraining the model drift in long time-scale predictions. The coupled model state–parameter optimization greatly enhances the model predictability. While valid “atmospheric” forecasts are extended 5 times, the decadal predictability of the “deep ocean” is almost doubled. The coherence of optimized model parameters and states is critical to improve the long time-scale predictions.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jaber Almedeij

Implementation of adequate measures to assess and monitor droughts is recognized as a major matter challenging researchers involved in water resources management. The objective of this study is to assess the hydrologic drought characteristics from the historical rainfall records of Kuwait with arid environment by employing the criterion of Standardized Precipitation Index (SPI). A wide range of monthly total precipitation data from January 1967 to December 2009 is used for the assessment. The computation of the SPI series is performed for intermediate- and long-time scales of 3, 6, 12, and 24 months. The drought severity and duration are also estimated. The bivariate probability distribution for these two drought characteristics is constructed by using Clayton copula. It has been shown that the drought SPI series for the time scales examined have no systematic trend component but a seasonal pattern related to rainfall data. The results are used to perform univariate and bivariate frequency analyses for the drought events. The study will help evaluating the risk of future droughts in the region, assessing their consequences on economy, environment, and society, and adopting measures for mitigating the effect of droughts.


2020 ◽  
Vol 498 (1) ◽  
pp. L25-L30
Author(s):  
Numa Karolinski ◽  
Wei Zhu(祝伟)

ABSTRACT Gravitational microlensing can detect isolated stellar-mass black holes (BHs), which are believed to be the dominant form of Galactic BHs according to population synthesis models. Previous searches for BH events in microlensing data focused on long time-scale events with significant microlensing parallax detections. Here we show that, although BH events preferentially have long time-scales, the microlensing parallax amplitudes are so small that in most cases the parallax signals cannot be detected statistically significantly. We then identify OGLE-2006-BLG-044 to be a candidate BH event because of its long time-scale and small microlensing parallax. Our findings have implications to future BH searches in microlensing data.


2011 ◽  
Vol 24 (3) ◽  
pp. 909-926 ◽  
Author(s):  
Timothy DelSole ◽  
Michael K. Tippett ◽  
Jagadish Shukla

Abstract The problem of separating variations due to natural and anthropogenic forcing from those due to unforced internal dynamics during the twentieth century is addressed using state-of-the-art climate simulations and observations. An unforced internal component that varies on multidecadal time scales is identified by a new statistical method that maximizes integral time scale. This component, called the internal multidecadal pattern (IMP), is stochastic and hence does not contribute to trends on long time scales; however, it can contribute significantly to short-term trends. Observational estimates indicate that the trend in the spatially averaged “well observed” sea surface temperature (SST) due to the forced component has an approximately constant value of 0.1 K decade−1, while the IMP can contribute about ±0.08 K decade−1 for a 30-yr trend. The warming and cooling of the IMP matches that of the Atlantic multidecadal oscillation and is of sufficient amplitude to explain the acceleration in warming during 1977–2008 as compared to 1946–77, despite the forced component increasing at the same rate during these two periods. The amplitude and time scale of the IMP are such that its contribution to the trend dominates that of the forced component on time scales shorter than 16 yr, implying that the lack of warming trend during the past 10 yr is not statistically significant. Furthermore, since the IMP varies naturally on multidecadal time scales, it is potentially predictable on decadal time scales, providing a scientific rationale for decadal predictions. While the IMP can contribute significantly to trends for periods of 30 yr or shorter, it cannot account for the 0.8°C warming that has been observed in the twentieth-century spatially averaged SST.


Author(s):  
Ghanshyam Rai

<div><p><em>A high-power Gaussian Whistler propagating in a magnatoplasma becomes self-focused because of (i) ponderomotive force and (ii) nonuniform heating nonlinearities (i) being dominant for t &lt;&lt; T and (ii) being dominant for t &gt; t<sub>E</sub>. On short time scale (t &lt;&lt; t<sub>E</sub> ) whistlers of all frequencies can be focused (the self – focusing length is very large for ω= </em><em> /2 and decreases rapidly on both sides), whereas on the long time scale (t &gt; t<sub>E</sub>) only high frequency whistlers (ω&gt; </em><em> /2) are focused. At very high powers the plasma is depleted almost completely from the axial region and self-focusing does not occur, rather, defocusing takes place. </em></p><p><em>            A plane uniform whistler of high intensity is seen to be unstable for small scale fluctuations, i.e., it must break up into filaments in course of it propagation. The growth rate increases with decreasing scale length of perturbation and is seen to be a saturating function of power density of the beam. </em></p></div>


Sign in / Sign up

Export Citation Format

Share Document