scholarly journals Characterizing and Monitoring Ground Settlement of Marine Reclamation Land of Xiamen New Airport, China with Sentinel-1 SAR Datasets

2019 ◽  
Vol 11 (5) ◽  
pp. 585 ◽  
Author(s):  
Xiaojie Liu ◽  
Chaoying Zhao ◽  
Qin Zhang ◽  
Chengsheng Yang ◽  
Jing Zhang

Artificial lands or islands reclaimed from the sea due to their vast land spaces and air are suitable for the construction of airports, harbors, and industrial parks, which are convenient for human and cargo transportation. However, the settlement process of reclamation foundation is a problem of public concern, including soil consolidation and water recharge. Xiamen New Airport, one of the largest international airports in China, has been under construction on marine reclamation land for three years. At present, the airport has reached the second phase of construction, occupying 15.33 km2. The project will last about twenty years. To investigate the temporal and spatial evolution of ground settlement associated with land reclamation, Sentinel-1 synthetic aperture radar (SAR) data, including intensity images and phase measurements, were considered. A total of 82 SAR images acquired by C-band Sentinel-1 satellite covering the time period from August 2015 to October 2018 were collected. First, the spatial evolution process of land reclamation was analyzed by exploring the time series of SAR image intensity maps. Then, the small baseline subset InSAR (SBAS–InSAR) technique was used to retrieve ground deformation information over the past three years for the first time since land reclamation. Results suggest that the reclaimed land experienced remarkable subsidence, especially after the second phase of land reclamation. Furthermore, 26 ground settlement areas (i.e., 0.015% of the whole area) associated with land reclamation were uncovered over an area of more than 1200 km2 of the Xiamen coastal area from January 2017 to October 2018. This study offers important guidance for the next phase of land reclamation and the future construction of Xiamen New Airport.

2015 ◽  
Vol 15 (9) ◽  
pp. 1973-1984 ◽  
Author(s):  
O. Cavalié ◽  
A. Sladen ◽  
M. Kelner

Abstract. River deltas are dynamic coastal systems and their evolutions are closely monitored as it often concentrates vital natural resources for the surrounding areas. Many deltas worldwide experience subsidence due to geological processes (sediment loading and compaction) or human activities (groundwater or hydrocarbon extraction, land reclamation). This causes shoreline erosion or wetland loss which represent serious issues for the population. In this study we investigate the dynamic of the Var delta (France) where reclaimed lands over sea have been built to host the Nice côte d'Azur airport (NCA). Actually, the stability of this infrastructure is a permanent concern since, in 1979, a newly built extension of the runway platform collapsed in the sea, causing important damages. The project of land extension stopped, but the present airport platform is still located on reclaimed land. Factors that can trigger such catastrophic landslide are thought to be linked to the delta activity and the artificial airport platform load. We used, therefore, Envisat InSAR data to measure accurately the ground deformation of the area that includes the Var delta and NCA airport. Combining data from ascending and descending orbits, we estimated the east–west and vertical components of the deformation and obtained very accurate displacement rate (with a 1σ error of 0.25 mm yr−1). We found that nearly all the deformation is vertical and impacts the whole Var delta. The Var valley subsides at a very low rate (0.5–1 mm yr−1) but downstream the subsidence rate increases and a clear jump is observed at the transition with the reclaimed lands (1–2 mm yr−1). On average, the reclaimed lands subside at 3 mm yr−1. Since the subsidence rate increases in correlation with the sediment thickness, we interpret it as the compaction of the delta quaternary sedimentary wedge. In addition, three areas subside faster (between 5 and 10 mm yr−1), with one calling for more attention as it is the largest and overlooks the steep Var canyon. The progressive increase of subsidence rates toward the sea also suggests that the underwater parts of the margins could subside at rates well above 10 mm yr−1.


2015 ◽  
Vol 3 (6) ◽  
pp. 3761-3788
Author(s):  
O. Cavalié ◽  
A. Sladen ◽  
M. Kelner

Abstract. River deltas are dynamic costal systems and their evolutions are closely monitored as it often concentrates vital natural resources for the surrounding areas. Many deltas, worldwide, experience subsidence due to geological processes (sediment loading and compaction) or human activities (groundwater or hydrocarbon extraction, land reclamation). This causes shoreline erosion or wetland loss which represent serious issues for the population. In this study, we investigate the dynamic of the Var delta (France) where reclaimed lands over sea have been built to host the Nice côte d'Azur airport (NCA). Actually, the stability of this infrastructure is a permanent concern since, in 1979, a newly built extension of the runway platform collapsed in the sea, causing important damages. The project of land extension stopped, but the present airport platform is still located on reclaimed land. Factors that can trigger such catastrophic landslide are thought to be linked to the delta activity and the artificial airport platform load. We used, therefore, Envisat InSAR data to measure accurately the ground deformation of the area that includes the Var delta and NCA airport. Combining data from ascending and descending orbits, we estimated the east–west and vertical components of the deformation and obtained very accurate displacement rate (with a 1σ error of 0.25 mm yr-1). We found that nearly all the deformation is vertical and impacts the whole Var delta. The Var valley subsides at a very low rate (0.5–1 mm yr-1) but downstream the subsidence rate increases and a clear jump is observed at the transition with the reclaimed lands (1–2 mm yr-1). On average, the reclaimed lands subside at 3 mm yr-1. Since the subsidence rate increases in correlation with the sediment thickness, we interpret it as the compaction of the delta quaternary sedimentary wedge. In addition, three areas subsides faster (between 5 and 10 mm yr-1), with one calling for more attention as it is the largest and overlooks the steep Var canyon. The progressive increase of subsidence rates toward the sea also suggests that the underwater parts of the margins could subside at rates well above 10 mm yr-1.


2021 ◽  
Vol 13 (4) ◽  
pp. 702
Author(s):  
Mustafa Kemal Emil ◽  
Mohamed Sultan ◽  
Khaled Alakhras ◽  
Guzalay Sataer ◽  
Sabreen Gozi ◽  
...  

Over the past few decades the country of Qatar has been one of the fastest growing economies in the Middle East; it has witnessed a rapid increase in its population, growth of its urban centers, and development of its natural resources. These anthropogenic activities compounded with natural forcings (e.g., climate change) will most likely introduce environmental effects that should be assessed. In this manuscript, we identify and assess one of these effects, namely, ground deformation over the entire country of Qatar. We use the Small Baseline Subset (SBAS) InSAR time series approach in conjunction with ALOS Palsar-1 (January 2007 to March 2011) and Sentinel-1 (March 2017 to December 2019) synthetic aperture radar (SAR) datasets to assess ground deformation and conduct spatial and temporal correlations between the observed deformation with relevant datasets to identify the controlling factors. The findings indicate: (1) the deformation products revealed areas of subsidence and uplift with high vertical velocities of up to 35 mm/yr; (2) the deformation rates were consistent with those extracted from the continuously operating reference GPS stations of Qatar; (3) many inland and coastal sabkhas (salt flats) showed evidence for uplift (up to 35 mm/yr) due to the continuous evaporation of the saline waters within the sabkhas and the deposition of the evaporites in the surficial and near-surficial sabkha sediments; (4) the increased precipitation during Sentinel-1 period compared to the ALOS Palsar-1 period led to a rise in groundwater levels and an increase in the areas occupied by surface water within the sabkhas, which in turn increased the rate of deposition of the evaporitic sediments; (5) high subsidence rates (up to 14 mm/yr) were detected over landfills and dumpsites, caused by mechanical compaction and biochemical processes; and (6) the deformation rates over areas surrounding known sinkhole locations were low (+/−2 mm/yr). We suggest that this study can pave the way to similar countrywide studies over the remaining Arabian Peninsula countries and to the development of a ground motion monitoring system for the entire Arabian Peninsula.


1998 ◽  
Vol 35 (5) ◽  
pp. 740-749 ◽  
Author(s):  
J Q Shang ◽  
M Tang ◽  
Z Miao

This case study presents the design, operation, and results of a soil improvement project using the vacuum preloading method on 480 000 m2 of reclaimed land in Xingang Port, Tianjing, China. The areas treated with vacuum ranged from 5000 to 30 000 m2. The effects of soil improvement are demonstrated through the average consolidation settlement of 2.0 m and increases in undrained shear strengths by a factor of two to four or more. The study shows that the vacuum method is an effective tool for the consolidation of very soft, highly compressive clayey soils over a large area. The technique is especially feasible in cases where there is a lack of surcharge loading fills, extremely low shear strength, soft ground adjacent to critical slopes, and access to a power supply.Key words: vacuum preloading consolidation, soil improvement, soft clays, land reclamation, prefabricated vertical drains.


Author(s):  
Gensheng LI ◽  
Jianxuan Shang ◽  
Zhenqi Hu ◽  
Dongzhu Yuan ◽  
Pengyu Li ◽  
...  

Underground coal mining will inevitably cause land ponding in high groundwater table, which will affect the land sustainable development. However, the traditional reclamation (TR) is poor in land rate. Thus, finding a suitable reclamation approach is crucial to alleviate the conflicts between coal exploitation and land protection. In this paper, taking Guqiao Coal Mine of China was seriously affected by mining-induced ponding as an example. Firstly, dynamic distribution of surface subsidence and land damage from 2007 to 2017 was revealed base on concurrent mining and reclamation (CMR). Second, the land-water layout of five reclamation schemes (no reclamation, TR, CMR I, CMR II and CMR III) were simulated. Then, and the dynamic filling elevation model and filling thickness model were constructed. Finally, the sequence of earthwork allocation was optimized. The results revealed that: 1) reclaimed land area: CMR III > CMR II > CMR I > TR > no reclamation; 2) The digging depth is directly proportional to earthwork volume and land area, and inversely proportional to water area, but with increase of digging depth, the increase in the reclaimed land area relatively slowed down; 3) CMRs had reclaimed 426.31~637.82 ha and 259.62~471.13 ha more than the no reclamation and TR respectively. Compared with the no reclamation and TR, CMRs can increase the proportion of reclaimed land by 33.77~50.52% and 20.57~37.32% respectively. The research results provide a reference to increase the reclamation rate of mining areas in the high phreatic table.


1994 ◽  
Vol 56 (1-4) ◽  
pp. 247-250 ◽  
Author(s):  
C.S. Dudney ◽  
D.L. Wilson ◽  
R.B. Gammage ◽  
H.L. Scott

Abstract The US Department of Energy (DOE) conducted an initial study of indoor radon in buildings under its control in response to Public Law 100-551, the Indoor Radon Abatement Act, enacted by the US Congress in 1988. Other federal agencies have also conducted radon surveys. This paper presents an overview of the results from radon testing of several thousand buildings ranging from 100 m2 to over 10,000 m2 in size. In addition, results from groups of buildings have been examined, classified according to ventilation and usage characteristics. So far, there is no apparent difference among building classes. The paper also discusses a proposal for phased radon surveys. It is suggested that first-phase results can be used to identify facilities with radon problems. In the second phase, measurements can be made at a much higher sampling density at facilities with radon problems. The results of the second phase are expected to identify all buildings in need of mitigation.


2020 ◽  
Vol 12 (6) ◽  
pp. 1016 ◽  
Author(s):  
Qingbo Yu ◽  
Qing Wang ◽  
Xuexin Yan ◽  
Tianliang Yang ◽  
Shengyuan Song ◽  
...  

With the development of the economy, land reclamation, as a result of dredged soil, has become an effective measure to alleviate land scarcity in many coastal cities around the world. Chongming East Shoal (CES), a typical reclamation area in Shanghai that is formed by multi-phase reclamation projects, was selected as the study area. The small baseline subset–interferometry synthetic aperture radar (SBAS-InSAR) method was applied to derive the map of velocity distribution and accumulated deformation with 70 Sentinel-1 synthetic aperture radar (SAR) images collected from 22 March 2015 to 2 December 2019. In addition, 25 undisturbed soil samples, including dredger fill and underlying soil layers, were collected from five boreholes (maximum depth 55 m) through a field investigation. Laboratory tests were then performed on all soil samples in order to facilitate an understanding of geological features, including the measurement of basic physical properties, cation exchange capacity, compressibility, microscale structure, and pores. The present results show that the whole CES was undergoing differential ground deformation, with a velocity ranging from −47.5 to 34.6 mm/y. Fast (−3.4 mm/y) to slow (−0.3 mm/y) mean subsidence velocities were detected in multi-phase reclamation areas from inland areas to the coastline, and were controlled by building load and geological features of soil layers. Urbanization is the main factor that triggers accelerated subsidence and should receive special attention for reclamation areas that have been finished for a long time (over 20 years in this study). The geological features indicated that poor drainage conditions in offshore soil layers resulted in slow subsidence. The field investigation and laboratory test can be powerful explanatory tools to monitor the results from a mechanical perspective.


Author(s):  
N.N. Dubenok ◽  
◽  
Yu.G. Yanko ◽  
A.F. Petrushin ◽  
R.V. Kalinichenko ◽  
...  

2018 ◽  
Vol 32 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Sandy Nur Eko Wibowo ◽  
Gybert E. Mamuaya ◽  
Rignolda Djamaluddin

Coastal area land reclamation is a policy with various benefits, including its potential to increase economic growth. However, reclamation also potentially has adverse impacts on the environment, including increasing pressure on biodiversity, natural resources and natural ecosystems, and the most common problem is land subsidence. This study uses time-lapse microgravity anomaly to ascertain the distribution of gravity and vertical gradient anomaly in order to map the subsidence characteristics occurring in the Manado reclamation area. From the research that has been previously conducted, the positive gravity anomaly is spread around Megamall-Multimart to the north of Monaco Bay and on the southern side of Manado Town Square (Mantos). Positive anomaly values range from 3 to 29.7 μGal. The negative anomaly values are scattered around the Mantos and Megamas separating bridge and at some points around the Whiz Prime Hotel, Menora Church and towards the Pohon Kasih Megamas area. The reclaimed areas generally experience subsidence accompanied by a reduction in groundwater mass (Megamall and Mantos) due to the use of the groundwater by the community in these areas. Uplifts also occur at some points in the reclamation area of Megamas as a result of the occurrence of land subsidence. Longer-term research is needed to determine whether there is an increase in the rate of land subsidence in the Manado reclamation area. Over a longer period of time it can also be established whether there are other factors which affect land subsidence. Other geodetic methods to monitor subsidence, such as levelling, InSAR and GPS survey, which have been conducted in other locations, are also needed to obtain more detailed information about the land subsidence in this area.


2020 ◽  
Vol 4 (4) ◽  
pp. 41-46
Author(s):  
L. A. Aleksandrovskaya ◽  
◽  
P. V. Polyakov ◽  

The development of land reclamation in modern conditions, on the one hand, manifests itself as an important tool for increasing not only the yield, but also soil fertility, and on the other hand, it can cause degradation of the soil cover both by irrigation erosion and by raising mineralized groundwater. Therefore, the use of advanced methods and methods of irrigation is an important direction in improving land reclamation activities in various economic conditions. The use of digitization methods in planning crop yields and irrigation water volumes can be particularly important for this process, with the aim of mutually influencing the efficiency of agricultural production on reclaimed land.


Sign in / Sign up

Export Citation Format

Share Document