scholarly journals Land Subsidence Analysis of Reclaimed Land using Time-Lapse Microgravity Anomaly in Manado, Indonesia

2018 ◽  
Vol 32 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Sandy Nur Eko Wibowo ◽  
Gybert E. Mamuaya ◽  
Rignolda Djamaluddin

Coastal area land reclamation is a policy with various benefits, including its potential to increase economic growth. However, reclamation also potentially has adverse impacts on the environment, including increasing pressure on biodiversity, natural resources and natural ecosystems, and the most common problem is land subsidence. This study uses time-lapse microgravity anomaly to ascertain the distribution of gravity and vertical gradient anomaly in order to map the subsidence characteristics occurring in the Manado reclamation area. From the research that has been previously conducted, the positive gravity anomaly is spread around Megamall-Multimart to the north of Monaco Bay and on the southern side of Manado Town Square (Mantos). Positive anomaly values range from 3 to 29.7 μGal. The negative anomaly values are scattered around the Mantos and Megamas separating bridge and at some points around the Whiz Prime Hotel, Menora Church and towards the Pohon Kasih Megamas area. The reclaimed areas generally experience subsidence accompanied by a reduction in groundwater mass (Megamall and Mantos) due to the use of the groundwater by the community in these areas. Uplifts also occur at some points in the reclamation area of Megamas as a result of the occurrence of land subsidence. Longer-term research is needed to determine whether there is an increase in the rate of land subsidence in the Manado reclamation area. Over a longer period of time it can also be established whether there are other factors which affect land subsidence. Other geodetic methods to monitor subsidence, such as levelling, InSAR and GPS survey, which have been conducted in other locations, are also needed to obtain more detailed information about the land subsidence in this area.

2014 ◽  
Vol 15 (1) ◽  
pp. 7 ◽  
Author(s):  
Suhayat Minardi ◽  
Hiden Hiden ◽  
Daharta Dahrin ◽  
Mahmud Yusuf

Studies have been conducted to identify the occurrence of subsidence, a decline of groundwater, and to model the causes of subsidence in areas of Jakarta based on response of microgravity anomaly and vertical gravity gradient over time. Based on the processing and interpretation of gravity data advance of the time concluded that by using a combination of time lapse microgravity and its vertical gradient have been able to localize the source of the gravity anomaly and the results are strongly support the results of filtering to separate the source of the anomaly. The subsidence that occurs predominantly due to resettlement (in West and North Jakarta), caused by the extraction of groundwater and resettlement (in Central and East Jakarta), and dominated due to the extraction of groundwater (in South Jakarta).Keywords : Groundwater, time lapse micogravity, time lapse vertical gradient, resettlement, subsidence


2016 ◽  
Vol 26 (1) ◽  
pp. 53-59
Author(s):  
A. K. Acharya ◽  
A. K. Chaudhary ◽  
S. Khanal

Utilization of land reclamation area offers the potentiality of increasing greenery as well as providing forest products. This study refers to the identification of the land reclamation areas and potential plantation areas on the Bagmati river-basin in the Terai region of Nepal, and recommends appropriate species for plantation in order to rehabilitate such areas. Multi-temporal Landsat Satellite Images (Landsat 7 and Landsat 8) were acquired for 2002 and 2014. Object-based Image Classification method was used to classify the land cover classes into four broad categories: i) Water, ii) Sand and gravel, iii) Plantation potential (open areas suitable for plantation) and iii) Others (forest, agriculture, built-up areas etc.). The Mean Normalized Difference Water Index (NDWI) values and Mean Brightness values were found to be helpful in identifying the water and sand & gravel areas from the other land cover classes. The overall classification accuracy was 0.97 with a kappa coefficient of 0.89 in the case of the 2014 Image classification. In this study, the land reclamation area referred to the areas occupied by water, sand & gravel on the river-beds that were converted into plantation potential and other classes between 2002 and 2014. Similarly, the potential plantation area referred to the summation of the area of reclaimed land, the area of ‘Others’ class converted into ‘Plantation potential’ class and the area that remained to be plantation potential on the bed of the Bagmati River and its tributaries between 2002 and 2014. Altogether, 4,819.10 ha land was reclaimed in the study area, and a total of 5,395.10 ha land was found to be potential for plantation within the study area.Banko JanakariA Journal of Forestry Information for NepalVol. 26, No. 1, Page:53-59, 2016


2020 ◽  
Author(s):  
Xiangbing Kong ◽  
Liangyou Wen

<p> </p><p>Land reclaim can be converted to arable land in China. Land reclamation is the process of reclamation and restoration to arable land on the basis of the original abandoned independent land. It mainly includes: land for coal mines, quarries, brick kilns, warehouses, other enterprises and institutions, and abandoned rural construction land. As of 2015, China's construction activities and natural disasters have damaged about 10 million hm<sup>2</sup> of land, with an annual increase of about 270,000 hm<sup>2</sup>. China's land reclamation rate is about 45%, of which about 50% of the land reclaimed is arable land. China has a large number of land reclamation practices and has very rich experience. First, we carried out land adaptability evaluation in the reclamation area .we selected the currently land for coal mines, quarries, brick kilns, warehouses, and other enterprises and institutions from natural, economic, and social aspects to evaluate its suitability, comprehensively calculated the consolidation potential, and calculated the area that could be reclaimed as arable land. Second, we carried out arable land construction in the reclamation area. Through land consolidation methods such as land leveling, farmland irrigation and drainage construction, shelterbelt network layout, and farmland road construction, rural residential areas that can be reclaimed as arable land, which will be sorted higher productivity arable land with a centralized patch, good irrigation and drainage , and complete farmland roads. Third, according to the soil conditions of the reclamation area, we carry out soil fertilization. We plowed the soil, applyed organic manure and soil biochar, improved soil water retention and porosity, enhanced soil fertility, improved arable land quality, and increased land production potential. Finally, after the land is reclaimed as arable land, we will monitor the soil conditions and ecological environment of the newly reclaimed arable land on a regular basis through the establishment of a regulatory agency. As same time, while we tried to meeting the fertility of the newly reclaimed arable land, we moinitor the ecological environment of the newly reclaimed land, ensuring sustainable use of arable land. Through the land reclamation, the per capita arable land area in the country have be increased by 0.08 mu. the annual grain yield per mu is calculated at 400kg, which increased 40 billion kg of grain each year. what’s more, farmers have increased the area of ​​arable land, increased their family income, and let themselves live better. By land be reclaimed to arable land, Chinese government has effectively protected 1.2 billion hm<sup>2</sup> of Red line of arable land and ensured national food security. At same time, farmers' income was increased by increasing of crop area, and intensive land conservation has been achieved, which has solved our country to a certain extent.</p>


2016 ◽  
Vol 18 (3) ◽  
pp. 147
Author(s):  
Sugeng Widada

Kebutuhan lahan dan dermaga, Pelindo III Tanjung Emas Semarang berencana melakukan reklamasi seluas 22,02 Ha menempel di sebelah barat pangkal break water barat pelabuhan. Daratan baru hasil reklamasi akan merubah bentuk garis pantai, maka dipastikan akan merubah pola arus yang selanjutnya berakibat pada pola transport sedimen dan sedimentasinya. Penelitian ini bertujuan untuk mempredikasikan pengaruh reklamasi tersebut di atas terhadap pola arus di perairan sekitar Pelabuhan Tanjung Emas Semarang, sehingga dapat dilakukan antisipasi dampak lanjutan yang mungkin terjadi. Metode yang digunakan dalam penelitian ini adalah metode kuantitatif denganpendekatan pemodelan matematis. Data arus diperoleh melalui pengukuran menggunakan ADCP dan data pasut diperoleh dari pengamatan palem pasut. Sedangkan data batimetri diambil dari data hasil pengukuran yang dilakukan oleh Pelindo III sebelumnya.Model hidrodinamika yang digunakan dalam penelitian ini adalah model POM (the Princeton Ocean Model) untuk kasus model 2D. Hasil penelitian menunjukan pola arus di perairan pelabuhan Tanjung Emas dan sekitarnya dipredikasikan tidak mengalamai perubahan yang signifikan dengan adanya reklamasi seluas 22 Ha di pangkal break water barat pelabuhan tersebut. Namun demikian arus menjadi sangat lambat hingga kurang dari 0,1 m/det tepat disisi barat lahan reklamasi sehingga berpotensi terjadinya sedimentasi di lokasi tersebut. Demikian juga tepat di sebelah timur lahan reklamasi, arus saat pasang masuk ke kolam labuh dengan kecepatan 0,2 m/det dan keluar saat surut dengan kecepatan 0,06 m/det sehingga berpotensi terjadi sedimentasi di sisi barat kolam labuhKata Kunci: Pelabuhan, Pelindo, Arus, Reklamasi, Tanjung MasPelindo III Tanjung Emas Semarang planned reclamation area of 22.02 ha on the west base of the west break water to Tmeet the needs of the land and pier. The new land reclamation will change the coastline, then it certainly will change the current pattern which in turn resulted in sediment transport and sedimentation patterns. The research was conducted to determinethe reclamation effect to the current in the waters around the Tanjung Emas Port Semarang, so it can be anticipatted the continued impact that may occur. The method used in this research is quantitative method with a mathematical modeling approach. Current was measured using ADCP and the tide was observed by tide gauge While the bathymetric taken from data which measured by Pelindo III earlier. Hydrodynamic model used in this study is a model POM (the Princeton Ocean Model) for the case of 2D models. The results showed that the current in the waters of Tanjung Emas harbor and surrounding predicated not experiencing a significant change in the reclamation area of 22 hectares at the base of the break water west of the port. However, the current becomes very slow to less than 0.1 m / s in the west side of reclaimed land, so it potential occurrence of sedimentation in these locations. Likewise, just east of land reclamation, the current flows into the pond at a speed of 0.2 m / s and out with a speed of 0.06 m / s, so it potential occurrence of sedimentation.Keywords: Port, Pelindo, Currents, Reclamation, Tanjung Mas


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3181 ◽  
Author(s):  
Bo Hu ◽  
Junyu Chen ◽  
Xingfu Zhang

In recent years, the enormous losses caused by urban surface deformation have received more and more attention. Traditional geodetic techniques are point-based measurements, which have limitations in using traditional geodetic techniques to detect and monitor in areas where geological disasters occur. Therefore, we chose Interferometric Synthetic Aperture Radar (InSAR) technology to study the surface deformation in urban areas. In this research, we discovered the land subsidence phenomenon using InSAR and Global Navigation Satellite System (GNSS) technology. Two different kinds of time-series InSAR (TS-InSAR) methods: Small BAseline Subset (SBAS) and the Permanent Scatterer InSAR (PSI) process were executed on a dataset with 31 Sentinel-1A Synthetic Aperture Radar (SAR) images. We generated the surface deformation field of Shenzhen, China and Hong Kong Special Administrative Region (HKSAR). The time series of the 3d variation of the reference station network located in the HKSAR was generated at the same time. We compare the characteristics and advantages of PSI, SBAS, and GNSS in the study area. We mainly focus on the variety along the coastline area. From the results generated by SBAS and PSI techniques, we discovered the occurrence of significant subsidence phenomenon in the land reclamation area, especially in the metro construction area and the buildings with a shallow foundation located in the land reclamation area.


1989 ◽  
Vol 24 (4) ◽  
pp. 589-608 ◽  
Author(s):  
I.K. Tsanis ◽  
J. Biberhofer ◽  
C.R. Murthy ◽  
A. Sylvestre

Abstract Determination of the mass output through the St. Lawrence River outflow system is an important component in computing mass balance of chemical loadings to Lake Ontario. The total flow rate in the St. Lawrence River System at the Wolfe Island area was calculated from detailed time series current meter measurements from a network of current meters and Lagrangian drifter experiments. This flow is roughly distributed in the ratio of 55% to 45% in the South and North channel, respectively. Loading estimates of selected chemicals have been made by combining the above transport calculations with the ongoing chemical monitoring data at the St. Lawrence outflow. A vertical gradient in the concentration of some organic and inorganic chemicals was observed. The measured concentration for some of the chemicals was higher during the summer months and also is higher in the South Channel than in the North Channel of the St. Lawrence River. These loading estimates are useful not only for modelling the mass balance of chemicals in Lake Ontario but also for serving as input loadings to the St. Lawrence River system from Lake Ontario.


2000 ◽  
Vol 19 (3) ◽  
pp. 286-293 ◽  
Author(s):  
Klaas Koster ◽  
Pieter Gabriels ◽  
Matthias Hartung ◽  
John Verbeek ◽  
Geurt Deinum ◽  
...  

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C81-C92 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Hilde Grude Borgos ◽  
Martin Landrø

Effects of pressure and fluid saturation can have the same degree of impact on seismic amplitudes and differential traveltimes in the reservoir interval; thus, they are often inseparable by analysis of a single stacked seismic data set. In such cases, time-lapse AVO analysis offers an opportunity to discriminate between the two effects. We quantify the uncertainty in estimations to utilize information about pressure- and saturation-related changes in reservoir modeling and simulation. One way of analyzing uncertainties is to formulate the problem in a Bayesian framework. Here, the solution of the problem will be represented by a probability density function (PDF), providing estimations of uncertainties as well as direct estimations of the properties. A stochastic model for estimation of pressure and saturation changes from time-lapse seismic AVO data is investigated within a Bayesian framework. Well-known rock physical relationships are used to set up a prior stochastic model. PP reflection coefficient differences are used to establish a likelihood model for linking reservoir variables and time-lapse seismic data. The methodology incorporates correlation between different variables of the model as well as spatial dependencies for each of the variables. In addition, information about possible bottlenecks causing large uncertainties in the estimations can be identified through sensitivity analysis of the system. The method has been tested on 1D synthetic data and on field time-lapse seismic AVO data from the Gullfaks Field in the North Sea.


2013 ◽  
Vol 62 ◽  
pp. 44-51
Author(s):  
Park Sang Hyun ◽  
Kim Jae Ok ◽  
Ji Kwang Jae ◽  
Lee Deog Bae

2011 ◽  
Vol 8 (11) ◽  
pp. 3319-3329 ◽  
Author(s):  
Y. Zhang ◽  
A. J. Dore ◽  
X. Liu ◽  
F. Zhang

Abstract. Simulation of atmospheric nitrogen (N) deposition in the North China Plain (NCP) at high resolution, 5 × 5 km2, was conducted for the first time by the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model. The total N deposition budget was 1481 Gg in this region, with 77 % from reduced N and 23 % from oxidized N, and the annual deposition rate (47 kg N ha−1) was much higher than previously reported values for other parts of the world such as the UK (13 kg N ha−1), Poland (7.3 kg N ha−1) and EU27 (8.6 kg N ha−1). The exported N component (1981 Gg) was much higher than the imported N component (584 Gg), suggesting that the NCP is an important net emission source of N pollutants. Contributions of N deposition budgets from the seven provinces in this region were proportional to their area ratios. The calculated spatial distributions of N deposition displayed high rates of reduced N deposition in the south and of oxidized N deposition in the eastern part. The N deposition exceeded an upper limit of 30 kg N ha−1 for natural ecosystems over more than 90 % of the region, resulting in terrestrial ecosystem deterioration, impaired air quality and coastal eutrophication not only in the NCP itself but also in surrounding areas including the Bohai Sea and the Yellow Sea.


Sign in / Sign up

Export Citation Format

Share Document