scholarly journals The Performance of Different Mapping Functions and Gradient Models in the Determination of Slant Tropospheric Delay

2020 ◽  
Vol 12 (1) ◽  
pp. 130 ◽  
Author(s):  
Cong Qiu ◽  
Xiaoming Wang ◽  
Zishen Li ◽  
Shaotian Zhang ◽  
Haobo Li ◽  
...  

Global navigation satellite systems (GNSSs) have become an important tool for remotely sensing water vapor in the atmosphere. In GNSS data processing, mapping functions and gradient models are needed to map the zenith tropospheric delay (ZTD) to the slant total tropospheric delay (STD) along a signal path. Therefore, it is essential to investigate the spatial–temporal performance of various mapping functions and gradient models in the determination of STD. In this study, the STDs at nine elevations were first calculated by applying the ray-tracing method to the atmospheric European Reanalysis-Interim (ERA—Interim) dataset. These STDs were then used as the reference to study the accuracy of the STDs that determined the ZTD together with mapping functions and gradient models. The performance of three mapping functions (i.e., Niell mapping function (NMF), global mapping function (GMF), and Vienna mapping function (VMF1)) and three gradient models (i.e., Chen, MacMillan, and Meindl) in six regions (the temperate zone, Qinghai–Tibet Plateau, Equator, Sahara Desert, Amazon Rainforest, and North Pole) in determining slant tropospheric delay was investigated in this study. The results indicate that the three mapping functions have relatively similar performance above a 15° elevation, but below a 15° elevation, VMF1 clearly performed better than the GMF and NMF. The results also show that, if no gradient model is included, the root-mean-square (RMS) of the STD is smaller than 2 mm above the 30° elevation and smaller than 9 mm above the 15° elevation but shows a significant increase below the 15° elevation. For example, in the temperate zone, the RMS increases from approximately 35 mm at the 10° elevation to approximately 160 mm at the 3° elevation. The inclusion of gradient models can significantly improve the accuracy of STDs by 50%. All three gradient models performed similarly at all elevations and in all regions. The bending effect was also investigated, and the results indicate that the tropospheric delay caused by the bending effect is normally below 13 mm above a 15° elevation, but this delay increases dramatically from approximately 40 mm at a 10° elevation to approximately 200 mm at a 5° elevation, and even reaches 500–700 mm at a 3° elevation in most studied regions.

2020 ◽  
Author(s):  
Faruk Can Durmus ◽  
Bahattin Erdogan

<p>Global Navigation Satellite Systems (GNSS) are effectively used for different applications of Geomatic Engineering. There are lots of model error sources that affect the performance of the point positioning. Especially for the Precise Point Positioning (PPP) technique, which depends on the absolute point positioning, these errors should be modelled since PPP technique utilizes un-differenced and ionosphere-free combinations. Studies about PPP technique show that the effect of tropospheric delay caused by water vapor and dry air in the troposphere, which affects GNSS signals, is an important parameter should be modelled. Total zenith delay consists of both hydrostatic and wet delay. Hydrostatic delay can be accurately estimated by using atmospheric surface pressure and temperature with empirical models. Although there are many empirical models currently used for the determination of the zenith wet delay, the accuracies of these models are inadequate due to the temporal and spatial variation of atmospheric water vapor. Moreover, the tropospheric delay occurs along the path of GNSS signals and the Mapping Functions (MFs) are used to convert the tropospheric signal delay along the zenith direction to the slant direction. In this study, it is aimed to measure the effect of the globally produced MFs as Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), Global Mapping Function (GMF) and Global Pressure Temperature model 2 (GPT2) for GNSS positioning accuracy. Only GPS satellite system has been taken into account. For the analysis it has planned to process approximately 294 permanent stations from Crustal Dynamics Data Information System (CDDIS) archive with Jet Propulsion Laboratory’s GipsyX v1.2 software. In order to reveal the effect of different season the GPS observations in January, April, July and October, 2018 have been obtained. The solutions were derived for different session durations as 2, 4, 6, 8, 12 and 24 hours for each global MFs and root mean square values have been estimated for each session durations. According to the first results that based on the six points, which the ellipsoidal heights of them are between 20 m and 105 m, although the results of north and east components are close to each other; the results of VMF1 are better than other global MFs for up component.</p><p> </p><p><strong>Keywords</strong>: State-of-the-Art Mapping Function, Troposphere, Precise Point Positioning, Accuracy, GipsyX</p>


2019 ◽  
Vol 50 ◽  
pp. 1-7
Author(s):  
Daniel Landskron ◽  
Johannes Böhm ◽  
Thomas Klügel ◽  
Torben Schüler

Abstract. During the Continuous Very Long Baseline Interferometry (VLBI) Campaign 2017 (CONT17), carried out from 28 November through 12 December 2017, an extensive data set of atmospheric observations was acquired at the Geodetic Observatory Wettzell. In addition to in situ measurements of temperature, humidity, pressure or wind speed at the surface, radiosonde ascents yielded meteorological parameters continually up to 25 km height, and integrated water vapor (IWV) was obtained at several elevations and azimuths from a water vapor radiometer. Troposphere delays estimated from Global Navigation Satellite Systems (GNSS) observations plus comparative values from two different Numerical Weather Models (NWMs) complete the abundance of data. In this presentation, we compare these data sets to parameters of the Vienna Mapping Functions 1 and 3 (VMF1 & VMF3), which are based on NWM data by the ECMWF, and to estimates of VLBI analysis using the Vienna VLBI and Satellite Software (VieVS). On the one hand, we contrast the variety of troposphere delays in zenith direction with each other, while on the other hand we utilize radiosonde data and meteorological observations at the site to create local mapping functions which can then be compared to VMF3 and VMF1 at Wettzell. In general, we thus received very good accordance between the different solutions. Also in terms of the mapping functions, the local radiosonde mapping function is in consistence with VMF1 and VMF3 with differences less than 5 mm at 5∘ elevation.


2021 ◽  
Author(s):  
Faruk Can Durmus ◽  
Bahattin Erdogan

<p>Global Navigation Satellite Systems (GNSS) are effectively used for different applications of Geomatic Engineering. There are lots of model error sources that affect the performance of the point positioning. Especially for the Precise Point Positioning (PPP) technique, which depends on the absolute point positioning, these errors should be modelled since PPP technique utilizes un-differenced and ionosphere-free combinations. Studies about PPP technique show that the effect of tropospheric delay caused by water vapor and dry air in the troposphere, which affects GNSS signals, is an important parameter should be modelled. Total zenith delay consists of both hydrostatic and wet delay. Hydrostatic delay can be accurately estimated by using atmospheric surface pressure and height with empirical models. Although there are many empirical models currently used for the determination of the zenith wet delay, the accuracies of these models are inadequate due to the temporal and spatial variation of atmospheric water vapor. Moreover, the tropospheric delay occurs along the path of GNSS signals and the Mapping Functions (MFs) are used to convert the tropospheric signal delay along the zenith direction to the slant direction. In this study, it is aimed to measure the effect of the globally produced MFs as Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), Global Mapping Function (GMF) and Global Pressure Temperature model 2 (GPT2) for GNSS positioning accuracy. Only GPS satellite system has been taken into account. For the analysis it has planned to process approximately 294 permanent stations from Crustal Dynamics Data Information System (CDDIS) archive with Jet Propulsion Laboratory’s GipsyX v1.2 software. In order to reveal the effect of different season the GPS observations in January, April, July and October, 2018 have been obtained. The solutions were derived for different session durations as 2, 4, 6, 8, 12 and 24 hours for each global MFs and root mean square values have been estimated for each session durations.</p><p><strong>Keywords</strong>: State-of-the-Art Mapping Function, Troposphere, Precise Point Positioning, Accuracy, GipsyX</p>


2017 ◽  
Vol 17 (4B) ◽  
pp. 1-7
Author(s):  
Nguyen Xuan Anh ◽  
Lutsenko V. I. ◽  
Popov D. O. ◽  
Cong Pham Chi ◽  
Trung Tran Hoai

This paper is devoted to solving the problem of atmosphere diagnosis using radiation of the global navigation satellites. New methods for diagnosing the meteorological situation, the refractive state of the troposphere and underlying surface based on the behavior of navigation signals are proposed. The model of the mapping function that takes into account the sphericity of the troposphere and allows more accurate describing of the actual values for the tropospheric delay is proposed.


2017 ◽  
Vol 11 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Sobhy Abdel-Monam Younes

Background:The author compares several methods to map the a priori wet tropospheric delay of GNSS signals in Egypt from the zenith direction to lower elevations.Methods and Materials:The author compared the following mapping techniques against ray-traced delays computed for radiosonde profiles under the assumption of spherical symmetry: Saastamoinen, Hopfield, Black, Chao, Ifadis, Herring, Niell, Moffett, Black and Eisner and UNBabc mapping functions. Radiosonde data were computed from radiosonde stations at the Egyptian stations; in the south of Egypt, near the Mediterranean Sea, and near the Red Sea over a period of 5 years (2000-2005), most of the stations launched radiosonde twice daily, every day of the year. Moreover, data is received from the Egyptian Meteorology Authority.Results and Conclusion:The results indicate that currently, the saastamoinen mapping function should be used for all geodetic applications in Egypt, and if necessary, the Chao and Moffett mapping functions can serve as an acceptable replacement without introducing a significant bias into the station position.


Author(s):  
Oleg Odalović ◽  
Danilo Joksimović ◽  
Dušan Petković ◽  
Marko Stanković ◽  
Sanja Grekulović

Within this paper, we evaluated the quality of three Global Geopotential Models entitled: EGM96,EGM2008, and GOCO05c. The models were evaluated by using 1001 terrestrial discrete values ofheight anomalies determined by Global Navigation Satellite Systems and normal heights, which weconsidered to be true values within this research. In addition to the quality evaluation, we tailoredthe models by using more than 80000 free air anomalies. The results obtained from the evaluationand tailoring indicate that by using the GOCO05c it is possible to determine a set of anomaly heightsacross Serbia, which are in agreement with terrestrial values with an average value of -7 cm, thestandard deviation of ±9 cm and with the range of 44 cm.


2021 ◽  
Author(s):  
Grzegorz Bury ◽  
Krzysztof Sośnica ◽  
Radosław Zajdel ◽  
Dariusz Strugarek ◽  
Urs Hugentobler

<p>All satellites of the Galileo and GLONASS navigation systems are equipped with laser retroreflector arrays for Satellite Laser Ranging (SLR). SLR observations to Global Navigation Satellite Systems (GNSS) provide the co-location of two space geodetic techniques onboard navigation satellites.</p><p>SLR observations, which are typically used for the validation of the microwave-GNSS orbits, can now contribute to the determination of the combined SLR+GNSS orbits of the navigation satellites. SLR measurements are especially helpful for periods when the elevation of the Sun above the orbital plane (β angle) is the highest. The quality of Galileo-IOV orbits calculated using combined SLR+GNSS observations improves from 36 to 30 mm for β> 60° as compared to the microwave-only solution. </p><p>Co-location of two space techniques allows for the determination of the linkage between SLR and GNSS techniques in space. Based on the so-called space ties, it is possible to determine the 3D vector between the ground-based co-located SLR and GNSS stations and compare it with the local ties which are determined using the ground measurements. The agreement between local ties derived from co-location in space and ground measurements is at the level of 1 mm in terms of the long-term median values for the co-located station in Zimmerwald, Switzerland.</p><p>We also revise the approach for handling the SLR range biases which constitute one of the main error sources for the SLR measurements. The updated SLR range biases consider now the impact of not only of SLR-to-GNSS observations but also the SLR observations to LAGEOS and the microwave GNSS measurements. The updated SLR range biases improve the agreement between space ties and local ties from 34 mm to 23 mm for the co-located station in Wettzell, Germany.</p><p>Co-location of SLR and GNSS techniques onboard navigation satellites allows for the realization of the terrestrial reference frame in space, onboard Galileo and GLONASS satellites, independently from the ground measurements. It may also deliver independent information on the local tie values with full variance-covariance data for each day with common measurements or can contribute to the control of the ground measurements as long as both GNSS and SLR-to-GNSS observations are available.</p>


Author(s):  
Zbigniew Siejka

The main aim of this work is research on the use of satellite positioning GNSS – RTK / RTN techniques to estimate the trajectory of a hydrographic boat. Modern hydrographic boat is the carrier of advanced bathymetry system, integral with GNSS positioning techniques. The key elements of the correct execution of the hydroacoustic survey are two elements: the height of the water surface and precise determination of the position in the moment of performing depth measurement. Integrated Bathymetric System (ZSB) is installed on a floating platform which is in constant motion. To obtain correct results of the hydroacoustic survey, it is necessary to know the precise (3D) position of the platform. In this paper the author presented his own research on the precise determination of accurate and reliable trajectory of a boat. The proposed method uses Real Time Kinematic (RTK) techniques of satellite positioning GNSS (Global Navigation Satellite Systems). The article presents examples of the results obtained during the research work at the largest Polish river.


2019 ◽  
Vol 37 (3) ◽  
pp. 429-446 ◽  
Author(s):  
Michal Kačmařík ◽  
Jan Douša ◽  
Florian Zus ◽  
Pavel Václavovic ◽  
Kyriakos Balidakis ◽  
...  

Abstract. An analysis of processing settings impacts on estimated tropospheric gradients is presented. The study is based on the benchmark data set collected within the COST GNSS4SWEC action with observations from 430 Global Navigation Satellite Systems (GNSS) reference stations in central Europe for May and June 2013. Tropospheric gradients were estimated in eight different variants of GNSS data processing using precise point positioning (PPP) with the G-Nut/Tefnut software. The impacts of the gradient mapping function, elevation cut-off angle, GNSS constellation, observation elevation-dependent weighting and real-time versus post-processing mode were assessed by comparing the variants by each to other and by evaluating them with respect to tropospheric gradients derived from two numerical weather models (NWMs). Tropospheric gradients estimated in post-processing GNSS solutions using final products were in good agreement with NWM outputs. The quality of high-resolution gradients estimated in (near-)real-time PPP analysis still remains a challenging task due to the quality of the real-time orbit and clock corrections. Comparisons of GNSS and NWM gradients suggest the 3∘ elevation angle cut-off and GPS+GLONASS constellation for obtaining optimal gradient estimates provided precise models for antenna-phase centre offsets and variations, and tropospheric mapping functions are applied for low-elevation observations. Finally, systematic errors can affect the gradient components solely due to the use of different gradient mapping functions, and still depending on observation elevation-dependent weighting. A latitudinal tilting of the troposphere in a global scale causes a systematic difference of up to 0.3 mm in the north-gradient component, while large local gradients, usually pointing in a direction of increasing humidity, can cause differences of up to 1.0 mm (or even more in extreme cases) in any component depending on the actual direction of the gradient. Although the Bar-Sever gradient mapping function provided slightly better results in some aspects, it is not possible to give any strong recommendation on the gradient mapping function selection.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3631
Author(s):  
Junsheng Ding ◽  
Junping Chen

Tropospheric delay is one of the major error sources in GNSS (Global Navigation Satellite Systems) positioning. Over the years, many approaches have been devised which aim at accurately modeling tropospheric delays, so-called troposphere models. Using the troposphere data of over 16,000 global stations in the last 10 years, as calculated by the Nevada Geodetic Laboratory (NGL), this paper evaluates the performance of the empirical troposphere model GPT3, which is the latest version of the GPT (Global Pressure and Temperature) series model. Owing to the large station number, long time-span and diverse station distribution, the spatiotemporal properties of the empirical model were analyzed using the average deviation (BIAS) and root mean square (RMS) error as indicators. The experimental results demonstrate that: (1) the troposphere products of NGL have the same accuracy as the IGS (International GNSS Service) products and can be used as a reference for evaluating general troposphere models. (2) The global average BIAS of the ZTD (zenith total delay) estimated by GPT3 is −0.99 cm and the global average RMS is 4.41 cm. The accuracy of the model is strongly correlated with latitude and ellipsoidal height, showing obviously seasonal variations. (3) The global average RMS of the north gradient and east gradient estimated by GPT3 is 0.77 mm and 0.73 mm, respectively, which are strongly correlated with each other, with values increasing from the equator to lower latitudes and decreasing from lower to higher latitudes.


Sign in / Sign up

Export Citation Format

Share Document