scholarly journals Exploiting High-Resolution Remote Sensing Soil Moisture to Estimate Irrigation Water Amounts over a Mediterranean Region

2020 ◽  
Vol 12 (16) ◽  
pp. 2593
Author(s):  
Jacopo Dari ◽  
Luca Brocca ◽  
Pere Quintana-Seguí ◽  
María José Escorihuela ◽  
Vivien Stefan ◽  
...  

Despite irrigation being one of the main sources of anthropogenic water consumption, detailed information about water amounts destined for this purpose are often lacking worldwide. In this study, a methodology which can be used to estimate irrigation amounts over a pilot area in Spain by exploiting remotely sensed soil moisture is proposed. Two high-resolution DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) downscaled soil moisture products have been used: SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) at 1 km. The irrigation estimates have been obtained through the SM2RAIN algorithm, in which the evapotranspiration term has been improved to adequately reproduce the crop evapotranspiration over irrigated areas according to the FAO (Food and Agriculture Organization) model. The experiment exploiting the SMAP data at 1 km represents the main work analyzed in this study and covered the period from January 2016 to September 2017. The experiment with the SMOS data at 1 km, for which a longer time series is available, allowed the irrigation estimates to be extended back to 2011. For both of the experiments carried out, the proposed method performed well in reproducing the magnitudes of the irrigation amounts that actually occurred in four of the five pilot irrigation districts. The SMAP experiment, for which a more detailed analysis was performed, also provided satisfactory results in representing the spatial distribution and the timing of the irrigation events. In addition, the investigation into which term of the SM2RAIN algorithm plays the leading role in determining the amount of water entering into the soil highlights the importance of correct representation of the evapotranspiration process.

2021 ◽  
Author(s):  
Jacopo Dari ◽  
Pere Quintana-Seguí ◽  
María José Escorihuela ◽  
Vivien Stefan ◽  
Renato Morbidelli ◽  
...  

<p>Irrigation represents a primary source of anthropogenic water consumption, whose effects impact on the natural distribution of water on the Earth’s surface and on food production. Over anthropized basins, irrigation often represents the missing variable to properly close the hydrological balance. Despite this, detailed information on the amounts of water actually applied for irrigation is lacking worldwide. In this study, a method to estimate irrigation volumes applied over a heavily irrigated area in the North East of Spain through high-resolution (1 km) remote sensing soil moisture is presented. Two DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) downscaled data sets have been used: SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity). The SMAP experiment covers the period from January 2016 to September 2017, while the SMOS experiment is referred to the time span from January 2011 to September 2017. The irrigation amounts have been retrieved through the SM2RAIN algorithm, in which the guidelines provided in the FAO (Food and Agriculture Organization) paper n.56 about the crop evapotranspiration have been implemented for a proper modeling of the crop evapotranspiration. A more detailed analysis has been performed in the context of the SMAP experiment. In fact, the spatial distribution and the temporal occurrence of the irrigation events have been investigated. Furthermore, the loss of accuracy of the irrigation estimates when using different sources for the evapotranspiration data has been assessed. In order to do this, the SMAP experiment has been repeated by forcing the SM2RAIN algorithm with several evapotranspiration data sets, both calculated and observed. Finally, the merging of the results obtained through the two experiments has produced a data set of almost 7 years of irrigation estimated from remote sensing soil moisture.</p>


Author(s):  
Melek Yiğen ◽  
Murat Tekiner

The “Action Plan for the Water Use in Agriculture Activation Program” in the Tenth Five-Year Development Plan, prepared by The Ministry of Development for the period 2014-2018, is one of the most important indicators of the increasing importance of water resources and irrigation. It’s published according to Blaney-Criddle method with the data of the Crop Evapotranspiration Guideline in 1982, for a guide to be updated by General Directorate of Agricultural Research And Policies (TAGEM) and General Directorate of State Hydraulic Works (DSI) in 2013, using the Food and Agriculture Organization (FAO) Penman Monteith method. While DSİ undertakes the calculation of reference plant water consumption (ET0), effective precipitation and irrigation water requirement of this update, TAGEM is responsible for the compilation of information obtained from irrigation researches, calculation of plant coefficient (kc) values, publication of guides in written and electronic media realized. In this study, five guides (Balıkesir, Çanakkale, Edirne, Kocaeli and Tekirdağ) in three different climatic regions (Akdeniz Ardı, Marmara and İç Geçit-Marmara) were used in this guide, which the two institutions jointly organize and update with intensive effort, TUIK 2012-2016 considering the data, the county made on the basis of agriculture and untreated plants, guide place whether to get cases examined, the importance and aspects to be developed contacts have tried to reveal.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 756 ◽  
Author(s):  
Alataway ◽  
Al-Ghobari ◽  
Mohammad ◽  
Dewidar

The determination of the water requirements and crop coefficient (Kc) of agricultural crops helps to create an appropriate irrigation schedule, and with the effective management of irrigation water. The aim of this research was to estimate the water requirement, Kc, and water-use efficiency (WUE) of potato using non-weighing-type lysimeters in four regions of the Kingdom of Saudi Arabia (Qassiem, Riyadh, Al-Jouf, and Eastern). Our results clearly show that the accumulated values of the measured crop evapotranspiration of potato derived from the lysimeters were 573, 554, 592, and 570 mm, while the accumulated values of the predicted crop evapotranspiration from Penman-Monteith equation based on FAO (Food and Agriculture Organization) were 651, 632, 672, and 647 mm for the Qassiem, Riyadh, Al-Jouf, and Eastern regions, respectively. The Kc values of potato obtained from the lysimeters were Kc initial (0.58, 0.54, 0.50, and 0.52), Kc middle (1.02, 1.05, 1.13, and 1.10), and Kc end (0.73, 0.74, 0.74, and 0.75) for the Qassiem, Riyadh, Al-Jouf, and Eastern regions, respectively. Based on the amount of water used and the yield achieved, the highest WUE (3.6 kg m−3) was observed in the Riyadh region, while the lowest WUE (1.5 kg m−3) was observed in the Al-Jouf region.


2021 ◽  
Vol 13 (7) ◽  
pp. 1276
Author(s):  
W. Lee Ellenburg ◽  
Vikalp Mishra ◽  
Jason B. Roberts ◽  
Ashutosh S. Limaye ◽  
Jonathan L. Case ◽  
...  

The objective of this study is to evaluate the ability of soil physical characteristics (i.e., texture and moisture conditions) to better understand the breeding conditions of desert locust (DL). Though soil moisture and texture are well-known and necessary environmental conditions for DL breeding, in this study, we highlight the ability of model-derived soil moisture estimates to contribute towards broader desert locust monitoring activities. We focus on the recent DL upsurge in East Africa from October 2019 though June 2020, utilizing known locust observations from the United Nations Food and Agriculture Organization (FAO). We compare this information to results from the current literature and combine the two datasets to create “optimal thresholds” of breeding conditions. When considering the most optimal conditions (all thresholds met), the soil texture combined with modeled soil moisture content predicted the estimated DL egg-laying period 62.5% of the time. Accounting for the data errors and uncertainties, a 3 × 3 pixel buffer increased this to 85.2%. By including soil moisture, the areas of optimal egg laying conditions decreased from 33% to less than 20% on average.


2020 ◽  
Author(s):  
Carlos A Almenara

[THE MANUSCRIPT IS A DRAFT] According to the Food and Agriculture Organization of the United Nations (FAO, 2020), food waste and losses comprises nearly 1.3 billion tonnes every year, which equates to around US$ 990 billion worldwide. Ironically, over 820 million people do not have enough food to eat (FAO, 2020). This gap production-consumption puts in evidence the need to reformulate certain practices such as the controversial monocropping (i.e., growing a single crop on the same land on a yearly basis), as well as to improve others such as revenue management through intelligent systems. In this first part of a series of articles, the focus is on the Peruvian anchoveta fish (Engraulis ringens).


Author(s):  
Gregory A. Barton

This chapter traces the expansion of industrial agricultural methods after the Second World War. Western governments and the Food and Agriculture Organization pushed for increased use of chemical fertilizers to aid development and resist Soviet encroachment. Meanwhile small groups of organic farmers and gardeners adopted Howard’s methods in the Anglo-sphere and elsewhere in the world. European movements paralleled these efforts and absorbed the basic principles of the Indore Method. British parliament debated the merits of organic farming, but Howard failed to persuade the government to adopt his policies. Southern Rhodesia, however, did implement his ideas in law. Desiccation theory aided his attempts in South Africa and elsewhere, and Louise Howard, after Albert’s death, kept alive a wide network of activists with her publications.


2021 ◽  
Vol 11 (13) ◽  
pp. 5911
Author(s):  
Vanesa Martos ◽  
Ali Ahmad ◽  
Pedro Cartujo ◽  
Javier Ordoñez

Timely and reliable information about crop management, production, and yield is considered of great utility by stakeholders (e.g., national and international authorities, farmers, commercial units, etc.) to ensure food safety and security. By 2050, according to Food and Agriculture Organization (FAO) estimates, around 70% more production of agricultural products will be needed to fulfil the demands of the world population. Likewise, to meet the Sustainable Development Goals (SDGs), especially the second goal of “zero hunger”, potential technologies like remote sensing (RS) need to be efficiently integrated into agriculture. The application of RS is indispensable today for a highly productive and sustainable agriculture. Therefore, the present study draws a general overview of RS technology with a special focus on the principal platforms of this technology, i.e., satellites and remotely piloted aircrafts (RPAs), and the sensors used, in relation to the 5th industrial revolution. Nevertheless, since 1957, RS technology has found applications, through the use of satellite imagery, in agriculture, which was later enriched by the incorporation of remotely piloted aircrafts (RPAs), which is further pushing the boundaries of proficiency through the upgrading of sensors capable of higher spectral, spatial, and temporal resolutions. More prominently, wireless sensor technologies (WST) have streamlined real time information acquisition and programming for respective measures. Improved algorithms and sensors can, not only add significant value to crop data acquisition, but can also devise simulations on yield, harvesting and irrigation periods, metrological data, etc., by making use of cloud computing. The RS technology generates huge sets of data that necessitate the incorporation of artificial intelligence (AI) and big data to extract useful products, thereby augmenting the adeptness and efficiency of agriculture to ensure its sustainability. These technologies have made the orientation of current research towards the estimation of plant physiological traits rather than the structural parameters possible. Futuristic approaches for benefiting from these cutting-edge technologies are discussed in this study. This study can be helpful for researchers, academics, and young students aspiring to play a role in the achievement of sustainable agriculture.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Anderson ◽  
K Schulze ◽  
A Cassini ◽  
D Plauchoras ◽  
E Mossialos

Abstract Antimicrobial resistance is one of the major challenges of our time. Countries use national action plans as a mechanism to build engagement among stakeholders and coordinate a range of actions across human, animal, and environmental health. However, implementation of recommended policies such as stewardship of antimicrobials, infection prevention and control, and stimulating research and development of novel antimicrobials and alternatives remains inconsistent. Improving the quality of governance within antimicrobial resistance national action plans is an essential step to improving implementation. To date, no systematic approach to governance of national action plans on AMR exists. To address this issue, we aimed to develop the first governance framework to offer guidance for both the development and assessment of national action plans on AMR. We reviewed health system governance framework reviews to inform the basic structure of our framework, international guidance documents from WHO, the Food and Agriculture Organization, the World Organisation for Animal Health, and the European Commission, and sought the input of 25 experts from international organisations, government ministries, policy institutes, and academic institutions to develop and refine our framework. The framework consists of 18 domains with 52 indicators that are contained within three governance areas: policy design, implementation tools, and monitoring and evaluation. Countries must engage with a cyclical process of continuous design, implementation, monitoring and evaluation to achieve these aims.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1567
Author(s):  
Joanna Moro ◽  
Nadezda Khodorova ◽  
Daniel Tomé ◽  
Claire Gaudichon ◽  
Catherine Tardivel ◽  
...  

Objective: Dietary intakes must cover protein and essential amino acid (EAA) requirements. For this purpose, different methods have been developed such as the nitrogen balance method, factorial method, or AA tracer studies. However, these methods are either invasive or imprecise, and the Food and Agriculture Organization of the United Nations (FAO, 2013) recommends new methods and, in particular, metabolomics. The aim of this study is to determine total protein/EAA requirement in the plasma and urine of growing rats. Methods: 36 weanling rats were fed with diets containing 3, 5, 8, 12, 15, and 20% protein for 3 weeks. During experimentation, urine was collected using metabolic cages, and blood from the portal vein and vena was taken at the end of the experiment. Metabolomics analyses were performed using LC-MS, and the data were analyzed with a multivariate analysis model, partial least Squares (PLS) regression, and independent component-discriminant analysis (ICDA). Each discriminant metabolite identified by PLS or ICDA was tested by one-way ANOVA to evaluate the effect of diet. Results: PLS and ICDA allowed us to identify discriminating metabolites between different diet groups. Protein deficiency led to an increase in the AA catabolism enzyme systems inducing the production of breakdown metabolites in the plasma and urine. Conclusion: These results indicate that metabolites are specific for the state of EAA deficiency and sufficiency. Some types of biomarkers such as AA degradation metabolites appear to be specific candidates for protein/EAA requirement.


Sign in / Sign up

Export Citation Format

Share Document