scholarly journals Estimation of Vertical Datum Parameters Using the GBVP Approach Based on the Combined Global Geopotential Models

2020 ◽  
Vol 12 (24) ◽  
pp. 4137
Author(s):  
Panpan Zhang ◽  
Lifeng Bao ◽  
Dongmei Guo ◽  
Lin Wu ◽  
Qianqian Li ◽  
...  

Unification of the global vertical datum has been a key problem to be solved for geodesy over a long period, and the main challenge for a unified vertical datum system is to determine the vertical offset between the local vertical datum and the global vertical datum. For this purpose, the geodetic boundary value problem (GBVP) approach based on the remove-compute-restore (RCR) technique is used to determine the vertical datum parameters in this paper. In the RCR technique, a global geopotential model (GGM) is required to remove and restore the long wavelengths of the gravity field. The satellite missions of the GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Exploration) offer high accuracy medium–long gravity filed information, but GRACE/GOCE-based GGMs are restricted to medium–long wavelengths because the maximum degree of their spherical harmonic representation is limited, which is known as an omission error. To compensate for the omission error of GRACE/GOCE-based GGM, a weighting method is used to determine the combined GGM by combining the high-resolution EGM2008 model (Earth Gravitational Model 2008) and GRACE/GOCE-based GGM to effectively bridge the spectral gap between satellite and terrestrial data. An additional consideration for the high-frequency gravity signals is induced by the topography, and the residual terrain model (RTM) is used to recover the omission errors effect of the combined GGM. In addition, to facilitate practical implementation of the GBVP approach, the effects of the indirect bias term, the spectral accuracy of the GGM, and the systematic levelling errors and distortions in estimations of the vertical datum parameters are investigated in this study. Finally, as a result of the GBVP solution based on the combined DIR_R6/EGM2008 model, RTM, and residual gravity, the geopotential values of the North American Vertical Datum of 1988 (NAVD88), the Australian Height Datum (AHD), and the Hong Kong Principal Datum (HKPD) are estimated to be equal to 62636861.31 ± 0.96, 62653852.60 ± 0.95 and 62636860.55 ± 0.29 m2s−2, respectively. The vertical offsets of NAVD88, AHD, and HKPD with respect to the global geoid are estimated as −0.809 ± 0.090, 0.082 ± 0.093, and −0.731 ± 0.030 m, respectively.

2012 ◽  
Vol 2 (4) ◽  
pp. 270-280 ◽  
Author(s):  
T. Gruber ◽  
C. Gerlach ◽  
R. Haagmans

AbstractIn this study an attempt is made to establish height system datum connections based upon a gravity field and steady-state ocean circulation explorer (GOCE) gravity field model and a set of global positioning system (GPS) and levelling data. The procedure applied in principle is straightforward. First local geoid heights are obtained point wise from GPS and levelling data. Then the mean of these geoid heights is computed for regions nominally referring to the same height datum. Subsequently, these local mean geoid heights are compared with a mean global geoid from GOCE for the same region. This way one can identify an offset of the local to the global geoid per region. This procedure is applied to a number of regions distributed worldwide. Results show that the vertical datum offset estimates strongly depend on the nature of the omission error, i.e. the signal not represented in the GOCE model. For a smooth gravity field the commission error of GOCE, the quality of the GPS and levelling data and the averaging control the accuracy of the vertical datum offset estimates. In case the omission error does not cancel out in the mean value computation, because of a sub-optimal point distribution or a characteristic behaviour of the omitted part of the geoid signal, one needs to estimate a correction for the omission error from other sources. For areas with dense and high quality ground observations the EGM2008 global model is a good choice to estimate the omission error correction in theses cases. Relative intercontinental height datum offsets are estimated by applying this procedure between the United State of America (USA), Australia and Germany. These are compared to historical values provided in the literature and computed with the same procedure. The results obtained in this study agree on a level of 10 cm to the historical results. The changes mainly can be attributed to the new global geoid information from GOCE, rather than to the ellipsoidal heights or the levelled heights. These historical levelling data are still in use in many countries. This conclusion is supported by other results on the validation of the GOCE models.


2014 ◽  
Vol 63 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Walyeldeen Godah ◽  
Malgorzata Szelachowska ◽  
Jan Krynski

Abstract The GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) has significantly upgraded the knowledge on the Earth gravity field. In this contribution the accuracy of height anomalies determined from Global Geopotential Models (GGMs) based on approximately 27 months GOCE satellite gravity gradiometry (SGG) data have been assessed over Poland using three sets of precise GNSS/levelling data. The fits of height anomalies obtained from 4th release GOCE-based GGMs to GNSS/levelling data were discussed and compared with the respective ones of 3rd release GOCE-based GGMs and the EGM08. Furthermore, two highly accurate gravimetric quasigeoid models were developed over the area of Poland using high resolution Faye gravity anomalies. In the first, the GOCE-based GGM was used as a reference geopotential model, and in the second - the EGM08. They were evaluated with GNSS/levelling data and their accuracy performance was assessed. The use of GOCE-based GGMs for recovering the long-wavelength gravity signal in gravimetric quasigeoid modelling was discussed.


2018 ◽  
Vol 11 (12) ◽  
pp. 4797-4815 ◽  
Author(s):  
Yihao Wu ◽  
Zhicai Luo ◽  
Bo Zhong ◽  
Chuang Xu

Abstract. A multilayer approach is set up for local gravity field recovery within the framework of multi-resolution representation, where the gravity field is parameterized as the superposition of multiple layers of Poisson wavelets located at different depths beneath the Earth's surface. The layers are designed to recover gravity signals at different scales, where the shallow and deep layers mainly capture the short- and long-wavelength signals, respectively. The depths of these layers are linked to the locations of different anomaly sources beneath the Earth's surface, which are estimated by wavelet decomposition and power spectrum analysis. For testing the performance of this approach, a gravimetric quasi-geoid model over the North Sea, QGNSea V1.0, is modeled and validated against independent control data. The results show that the multilayer approach fits the gravity data better than the traditional single-layer approach, particularly in regions with topographical variation. An Akaike information criterion (AIC) test shows that the multilayer model obtains a smaller AIC value and achieves a better balance between the goodness of fit of data and the simplicity of the model. Further, an evaluation using independent GPS/leveling data tests the ability of regional models computed from different approaches towards realistic extrapolation, which shows that the accuracies of the QGNSea V1.0 derived from the multilayer approach are better by 0.4, 0.9, and 1.1 cm in the Netherlands, Belgium, and parts of Germany, respectively, than that using the single-layer approach. Further validation with existing models shows that QGNSea V1.0 is superior with respect to performance and may be beneficial for studying ocean circulation between the North Sea and its neighboring waters.


2012 ◽  
Vol 2 (4) ◽  
pp. 290-301 ◽  
Author(s):  
T. Hayden ◽  
E. Rangelova ◽  
M. G. Sideris ◽  
M. Véronneau

AbstractThe existing Canadian Geodetic Vertical Datum of 1928 (CGVD28) does not meet the needs of the modern user in terms of accuracy and accessibility. As a result, Canada plans to implement a geoid-based and global navigation satellite system (GNSS)-accessible vertical datum by 2013. One of the primary concerns in realizing this new vertical datum is to determine a W0 value that will represent the potential of the zero height surface. The objective of this study is to evaluate W0 by averaging the potential of points on the mean sea water surface utilizing tide gauge recordings and gravity field and steady-state ocean circulation explorer (GOCE)-based global geopotential models. In order to assess the performance of the GOCE-based models for the computation of W0, the models are extended with the high resolution gravitational model EGM2008. Regional gravimetric geoid models are also used for the estimation of W0. Additionally, local sea surface topography models are utilized in order to validate the W0 results at the tide gauges. Excluding the Arctic coast, the W0 values obtained from both tide gauges and oceanic sea surface topography models are not statistically different from the International Earth Rotation and Reference Systems Service (IERS) 2010 global conventional value 62636856.00 m2/s2.


2012 ◽  
Vol 2 (4) ◽  
pp. 257-269 ◽  
Author(s):  
T. Hayden ◽  
B. Amjadiparvar ◽  
E. Rangelova ◽  
M.G. Sideris

AbstractThe performance of GOCE-based geopotential models is assessed for the estimation of offsets for three regional vertical datums in Canada with respect to a global equipotential surface using the GNSS benchmarks from the first-order vertical control network. Factors that affect the computed value of the local vertical datum offset include the GOCE commission and omission errors, measurement errors, the configuration of the network of GNSS/levelling benchmarks, and systematic levelling errors and distortions propagated through the vertical control network. Among these various factors, the effect of the GOCE omission error on the datum offsets is investigated by extending the models with the high resolution gravity field model EGM2008 and by means of Canada’s official high resolution geoid model CGG2010. The effect of the GOCE commission error in combination with errors from the GNSS/levelling data is also examined, in addition to the effect of systematic levelling errors. In Canada, the effect of the GOCE omission error is at the dm-level when computing local vertical datum offsets. The effect of including accuracy information for the GNSS/levelling data and the GOCE geoid heights can be up to 4 cm over the Canadian mainland and at the dm-level for island regions. Lastly, the spatial tilts found in the levelling network can be modelled with a 2-parameter bias corrector model, which reduces the RMS of the adjusted geoid height differences by 4 cm when compared to the RMS of adjusted geoid height differences computed without the use of a bias corrector model. Thus, when computing local vertical datum offsets in Canada, it is imperative to account for GOCE commission and omission errors, ellipsoidal and levelling height errors, as well as the systematic levelling errors of the vertical control network.


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2021 ◽  
Vol 11 (11) ◽  
pp. 5286
Author(s):  
Yihao Wu ◽  
Jia Huang ◽  
Hongkai Shi ◽  
Xiufeng He

Mean dynamic topography (MDT) is crucial for research in oceanography and climatology. The optimal interpolation method (OIM) is applied to MDT modeling, where the error variance–covariance information of the observations is established. The global geopotential model (GGM) derived from GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity data and the mean sea surface model derived from satellite altimetry data are combined to construct MDT. Numerical experiments in the Kuroshio over Japan show that the use of recently released GOCE-derived GGM derives a better MDT compared to the previous models. The MDT solution computed based on the sixth-generation model illustrates a lower level of root mean square error (77.0 mm) compared with the ocean reanalysis data, which is 2.4 mm (5.4 mm) smaller than that derived from the fifth-generation (fourth-generation) model. This illustrates that the accumulation of GOCE data and updated data preprocessing methods can be beneficial for MDT recovery. Moreover, the results show that the OIM outperforms the Gaussian filtering approach, where the geostrophic velocity derived from the OIM method has a smaller misfit against the buoy data, by a magnitude of 10 mm/s (17 mm/s) when the zonal (meridional) component is validated. This is mainly due to the error information of input data being used in the optimal interpolation method, which may obtain more reasonable weights of observations than the Gaussian filtering method.


2018 ◽  
Vol 14 (9) ◽  
pp. 1315-1330 ◽  
Author(s):  
Claire Waelbroeck ◽  
Sylvain Pichat ◽  
Evelyn Böhm ◽  
Bryan C. Lougheed ◽  
Davide Faranda ◽  
...  

Abstract. Thanks to its optimal location on the northern Brazilian margin, core MD09-3257 records both ocean circulation and atmospheric changes. The latter occur locally in the form of increased rainfall on the adjacent continent during the cold intervals recorded in Greenland ice and northern North Atlantic sediment cores (i.e., Greenland stadials). These rainfall events are recorded in MD09-3257 as peaks in ln(Ti ∕ Ca). New sedimentary Pa ∕ Th data indicate that mid-depth western equatorial water mass transport decreased during all of the Greenland stadials of the last 40 kyr. Using cross-wavelet transforms and spectrogram analysis, we assess the relative phase between the MD09-3257 sedimentary Pa ∕ Th and ln(Ti ∕ Ca) signals. We show that decreased water mass transport between a depth of ∼1300 and 2300 m in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 400 yr at Dansgaard–Oeschger (D–O) frequencies, and by 280 to 980 yr at Heinrich-like frequencies. We suggest that the large lead of ocean circulation changes with respect to changes in tropical South American precipitation at Heinrich-like frequencies is related to the effect of a positive feedback involving iceberg discharges in the North Atlantic. In contrast, the absence of widespread ice rafted detrital layers in North Atlantic cores during D–O stadials supports the hypothesis that a feedback such as this was not triggered in the case of D–O stadials, with circulation slowdowns and subsequent changes remaining more limited during D–O stadials than Heinrich stadials.


Sign in / Sign up

Export Citation Format

Share Document