scholarly journals On the Potential Optical Signature of Convective Turbulence over the West Florida Shelf

2021 ◽  
Vol 13 (4) ◽  
pp. 619
Author(s):  
Jason K. Jolliff ◽  
Sherwin Ladner ◽  
Travis A. Smith ◽  
Stephanie Anderson ◽  
Mark David Lewis ◽  
...  

Atmospheric cold front propagation across the northern Gulf of Mexico is characterized by elevated surface wind velocities and a ~10–15 °C drop in surface air temperatures. These meteorological conditions result in significant heat energy losses from the surface ocean to the overlying atmosphere. These seasonally recurring cold-air outbreak events may penetrate the southern portion of the West Florida continental shelf and initiate turbulent and convective overturn of the water column. Examination of true color images derived from ocean-viewing, satellite-based radiometer data reveals coincident and substantial surface water discolorations that are optically similar to smaller-scale “whiting events,” despite the regional-scale extent of the observed phenomenon (>25,000 km2). Coupled air–sea numerical simulations suggest the surface water discoloration occurs and is sustained where the entire water column is dynamically unstable. The simulation results indicate significant density (σt) inversions between the surface and bottom waters. Thus, the combined numerical model and remote sensing analysis suggest that convective turbulence may be contributing to the sustained ventilation of bottom waters containing a high concentration of suspended particulates. High-temporal resolution true color images rendered from the GOES-R Advanced Baseline Imager (ABI) data appear to support the surface water discoloration’s turbulent-driven nature.

1994 ◽  
Vol 30 (9) ◽  
pp. 249-253
Author(s):  
Pascal Maret

Significant damage to surface water is caused by cattle husbandry. Only one global approach of water management and farming techniques (breeding management and cultivation methods) will ensure significant results. A pilot study run in the west of France proved that water quality can easily be improved by renovating the cattle buildings. It also showed that manure used as a fertilizer covers cultivation needs, which allows substantial savings for the farmers.


2019 ◽  
Vol 11 (4) ◽  
pp. 374 ◽  
Author(s):  
John Jones

In order to produce useful hydrologic and aquatic habitat data from the Landsat system, the U.S. Geological Survey has developed the “Dynamic Surface Water Extent” (DSWE) Landsat Science Product. DSWE will provide long-term, high-temporal resolution data on variations in inundation extent. The model used to generate DSWE is composed of five decision-rule based tests that do not require scene-based training. To allow its general application, required inputs are limited to the Landsat at-surface reflectance product and a digital elevation model. Unlike other Landsat-based water products, DSWE includes pixels that are only partially covered by water to increase inundation dynamics information content. Previously published DSWE model development included one wetland-focused test developed through visual inspection of field-collected Everglades spectra. A comparison of that test’s output against Everglades Depth Estimation Network (EDEN) in situ data confirmed the expectation that omission errors were a prime source of inaccuracy in vegetated environments. Further evaluation exposed a tendency toward commission error in coniferous forests. Improvements to the subpixel level “partial surface water” (PSW) component of DSWE was the focus of this research. Spectral mixture models were created from a variety of laboratory and image-derived endmembers. Based on the mixture modeling, a more “aggressive” PSW rule improved accuracy in herbaceous wetlands and reduced errors of commission elsewhere, while a second “conservative” test provides an alternative when commission errors must be minimized. Replication of the EDEN-based experiments using the revised PSW tests yielded a statistically significant increase in mean overall agreement (4%, p = 0.01, n = 50) and a statistically significant decrease (11%, p = 0.009, n = 50) in mean errors of omission. Because the developed spectral mixture models included image-derived vegetation endmembers and laboratory spectra for soil groups found across the US, simulations suggest where the revised DSWE PSW tests perform as they do in the Everglades and where they may prove problematic. Visual comparison of DSWE outputs with an unusual variety of coincidently collected images for locations spread throughout the US support conclusions drawn from Everglades quantitative analyses and highlight DSWE PSW component strengths and weaknesses.


2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4992 ◽  
Author(s):  
Liwei Xing ◽  
Xinming Tang ◽  
Huabin Wang ◽  
Wenfeng Fan ◽  
Guanghui Wang

High temporal resolution water distribution maps are essential for surface water monitoring because surface water exhibits significant inner-annual variation. Therefore, high-frequency remote sensing data are needed for surface water mapping. Dongting Lake, the second-largest freshwater lake in China, is famous for the seasonal fluctuations of its inundation extents in the middle reaches of the Yangtze River. It is also greatly affected by the Three Gorges Project. In this study, we used Sentinel-1 data to generate surface water maps of Dongting Lake at 10 m resolution. First, we generated the Sentinal-1 time series backscattering coefficient for VH and VV polarizations at 10 m resolution by using a monthly composition method. Second, we generated the thresholds for mapping surface water at 10 m resolution with monthly frequencies using Sentinel-1 data. Then, we derived the monthly surface water distribution product of Dongting Lake in 2016, and finally, we analyzed the inner-annual surface water dynamics. The results showed that: (1) The thresholds were −21.56 and −15.82 dB for the backscattering coefficients for VH and VV, respectively, and the overall accuracy and Kappa coefficients were above 95.50% and 0.90, respectively, for the VH backscattering coefficient, and above 94.50% and 0.88, respectively, for the VV backscattering coefficient. The VV backscattering coefficient achieved lower accuracy due to the effect of the wind causing roughness on the surface of the water. (2) The maximum and minimum areas of surface water were 2040.33 km2in July, and 738.89 km2in December. The surface water area of Dongting Lake varied most significantly in April and August. The permanent water acreage in 2016 was 556.35 km2, accounting for 19.65% of the total area of Dongting Lake, and the acreage of seasonal water was 1525.21 km2. This study proposed a method to automatically generate monthly surface water at 10 m resolution, which may contribute to monitoring surface water in a timely manner.


Author(s):  
Guillaume Chagnaud ◽  
Geremy Panthou ◽  
Theo Vischel ◽  
Thierry Lebel

Abstract The West African Sahel has been facing for more than 30 years an increase in extreme rainfalls with strong socio-economic impacts. This situation challenges decision-makers to define adaptation strategies in a rapidly changing climate. The present study proposes (i) a quantitative characterization of the trends in extreme rainfalls at the regional scale, (ii) the translation of the trends into metrics that can be used by hydrological risk managers, (iii) elements for understanding the link between the climatology of extreme and mean rainfall. Based on a regional non-stationary statistical model applied to in-situ daily rainfall data over the period 1983-2015, we show that the region-wide increasing trend in extreme rainfalls is highly significant. The change in extreme value distribution reflects an increase in both the mean and variability, producing a 5%/decade increase in extreme rainfall intensity whatever the return period. The statistical framework provides operational elements for revising the design methods of hydraulic structures which most often assume a stationary climate. Finally, the study shows that the increase in extreme rainfall is more attributable to an increase in the intensity of storms (80%) than to their occurrence (20%), reflecting a major disruption from the decadal variability of the rainfall regime documented in the region since 1950.


2014 ◽  
Vol 11 (2) ◽  
pp. 2011-2044
Author(s):  
R. Barthel

Abstract. Today there is a great consensus that water resources research needs to become more holistic, integrating perspectives of a large variety of disciplines. Groundwater and surface water (hereafter: GW and SW) are typically identified as different compartments of the hydrological cycle and were traditionally often studied and managed separately. However, despite this separation, these respective fields of study are usually not considered to be different disciplines. They are often seen as different specialisations of hydrology with different focus, yet similar theory, concepts, methodology. The present article discusses how this notion may form a substantial obstacle in the further integration of GW and SW research and management. The article focusses on the regional scale (areas of approx. 103 to 106 km2), which is identified as the scale where integration is most greatly needed, but ironically the least amount of fully integrated research seems to be undertaken. The state of research on integrating GW and SW research is briefly reviewed and the most essential differences between GW hydrology (or hydrogeology, geohydrology) and SW hydrology are presented. Groundwater recharge and baseflow are used as examples to illustrate different perspectives on similar phenomena that can cause severe misunderstandings and errors in the conceptualisation of integration schemes. It is also discussed that integration of GW and SW research on the regional scale necessarily must move beyond the hydrological aspects, by collaborating with social sciences and increasing the interaction between science and the society in general. The typical elements of an ideal interdisciplinary workflow are presented and their relevance with respect to integration of GW and SW is discussed. The overall conclusions are that GW hydrology and SW hydrogeology study rather different objects of interest, using different types of observation, working on different problem settings. They have thus developed different theory, methodology and terminology. Yet, there seems to be a widespread lack of awareness of these differences which hinders the detection of the existing interdisciplinary aspects of GW and SW integration and consequently the development of truly unifying, interdisciplinary theory and methodology. Thus, despite having the ultimate goal of creating a more holistic approach, we should start integration by analysing potential disciplinary differences. Improved understanding among hydrologists of what interdisciplinary means and how it works is needed. Hydrologists, despite frequently being involved in multidisciplinary projects, are not sufficiently involved in developing interdisciplinary strategies and do usually not regard the process of integration as such as a research topic of its own. There seems to be a general reluctance to apply (truly) interdisciplinary methodology because this is tedious and few, immediate incentives are experienced.


2018 ◽  
Author(s):  
Marine Bretagnon ◽  
Aurélien Paulmier ◽  
Véronique Garçon ◽  
Boris Dewitte ◽  
Sérena Illig ◽  
...  

Abstract. The fate of the Organic Matter (OM) produced by marine life controls the major biogeochemical cycles of the Earth’s system. The OM produced through photosynthesis is either preserved, exported towards sediments or degraded through remineralisation in the water column. The productive Eastern Boundary Upwelling Systems (EBUSs) associated with Oxygen Minimum Zones (OMZs) should foster OM preservation due to low O2 conditions, but their intense and diverse microbial activity should enhance OM degradation. To investigate this contradiction, sediment traps were deployed near the oxycline and in the OMZ core on an instrumented moored line off Peru, providing high temporal resolution O2 series characterizing two seasonal steady states at the upper trap: suboxic ([O2] 


Author(s):  
Grzegorz Nycz

The text describes main US missile defence efforts in the first years of D. Trump’s administration. The analysis of current aspects of BMD (Ballistic Missile Defence) deployments is enhanced by probability analysis examining missile defence reliability. Donald Trump took office in the time of increased military competition between the West and Russia and a dangerous regional crisis related to North Korean nuclear arsenal and its ballistic tests. BMD appeared to bring additional chances to US deterrence options in regional scale, allowing more successful first strike or active defence posture. Notably, D. Trump’s administration managed to raise defence expenditures including BMD spending.


Sign in / Sign up

Export Citation Format

Share Document