scholarly journals Remote Sensing for Property Valuation: A Data Source Comparison in Support of Fair Land Taxation in Rwanda

2021 ◽  
Vol 13 (18) ◽  
pp. 3563
Author(s):  
Mila Koeva ◽  
Oscar Gasuku ◽  
Monica Lengoiboni ◽  
Kwabena Asiama ◽  
Rohan Mark Bennett ◽  
...  

Remotely sensed data is increasingly applied across many domains, including fit-for-purpose land administration (FFPLA), where the focus is on fast, affordable, and accurate property information collection. Property valuation, as one of the main functions of land administration systems, is influenced by locational, physical, legal, and economic factors. Despite the importance of property valuation to economic development, there are often no standardized rules or strict data requirements for property valuation for taxation in developing contexts, such as Rwanda. This study aims at assessing different remote sensing data in support of developing a new approach for property valuation for taxation in Rwanda; one that aligns with the FFPLA philosophy. Three different remote sensing technologies, (i) aerial images acquired with a digital camera, (ii) WorldView2 satellite images, and (iii) unmanned aerial vehicle (UAV) images obtained with a DJI Phantom 2 Vision Plus quadcopter, are compared and analyzed in terms of their fitness to fulfil the requirements for valuation for taxation purposes. Quantitative and qualitative methods are applied for the comparative analysis. Prior to the field visit, the fundamental concepts of property valuation for taxation and remote sensing were reviewed. In the field, reference data using high precision GNSS (Leica) was collected and used for quantitative assessment. Primary data was further collected via semi-structured interviews and focus group discussions. The results show that UAVs have the highest potential for collecting data to support property valuation for taxation. The main reasons are the prime need for accurate-enough and up-to-date information. The comparison of the different remote sensing techniques and the provided new approach can support land valuers and professionals in the field in bottom-up activities following the FFPLA principles and maintaining the temporal quality of data needed for fair taxation.

Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


2002 ◽  
Vol 34 ◽  
pp. 81-88 ◽  
Author(s):  
Massimo Frezzotti ◽  
Stefano Gandolfi ◽  
Floriana La Marca ◽  
Stefano Urbini

AbstractAs part of the International Trans-Antarctic Scientific Expedition project, the Italian Antarctic Programme undertook two traverses from the Terra Nova station to Talos Dome and to Dome C. Along the traverses, the party carried out several tasks (drilling, glaciological and geophysical exploration). The difference in spectral response between glazed surfaces and snow makes it simple to identify these areas on visible/near-infrared satellite images. Integration of field observation and remotely sensed data allows the description of different mega-morphologic features: wide glazed surfaces, sastrugi glazed surface fields, transverse dunes and megadunes. Topography global positioning system, ground penetrating radar and detailed snow-surface surveys have been carried out, providing new information about the formation and evolution of mega-morphologic features. The extensive presence, (up to 30%) of glazed surface caused by a long hiatus in accumulation, with an accumulation rate of nil or slightly negative, has a significant impact on the surface mass balance of a wide area of the interior part of East Antarctica. The aeolian processes creating these features have important implications for the selection of optimum sites for ice coring, because orographic variations of even a few metres per kilometre have a significant impact on the snow-accumulation process. Remote-sensing surveys of aeolian macro-morphology provide a proven, high-quality method for detailed mapping of the interior of the ice sheet’s prevalent wind direction and could provide a relative indication of wind intensity.


2020 ◽  
Author(s):  
Matheus B. Pereira ◽  
Jefersson Alex Dos Santos

High-resolution aerial images are usually not accessible or affordable. On the other hand, low-resolution remote sensing data is easily found in public open repositories. The problem is that the low-resolution representation can compromise pattern recognition algorithms, especially semantic segmentation. In this M.Sc. dissertation1 , we design two frameworks in order to evaluate the effectiveness of super-resolution in the semantic segmentation of low-resolution remote sensing images. We carried out an extensive set of experiments on different remote sensing datasets. The results show that super-resolution is effective to improve semantic segmentation performance on low-resolution aerial imagery, outperforming unsupervised interpolation and achieving semantic segmentation results comparable to highresolution data.


2009 ◽  
Vol 1 (1) ◽  
Author(s):  
Biswajeet Pradhan

AbstractThis paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.


Author(s):  
Ram L. Ray ◽  
Maurizio Lazzari ◽  
Tolulope Olutimehin

Landslide is one of the costliest and fatal geological hazards, threatening and influencing the socioeconomic conditions in many countries globally. Remote sensing approaches are widely used in landslide studies. Landslide threats can also be investigated through slope stability model, susceptibility mapping, hazard assessment, risk analysis, and other methods. Although it is possible to conduct landslide studies using in-situ observation, it is time-consuming, expensive, and sometimes challenging to collect data at inaccessible terrains. Remote sensing data can be used in landslide monitoring, mapping, hazard prediction and assessment, and other investigations. The primary goal of this chapter is to review the existing remote sensing approaches and techniques used to study landslides and explore the possibilities of potential remote sensing tools that can effectively be used in landslide studies in the future. This chapter also provides critical and comprehensive reviews of landslide studies focus¬ing on the role played by remote sensing data and approaches in landslide hazard assessment. Further, the reviews discuss the application of remotely sensed products for landslide detection, mapping, prediction, and evaluation around the world. This systematic review may contribute to better understanding the extensive use of remotely sensed data and spatial analysis techniques to conduct landslide studies at a range of scales.


2020 ◽  
Vol 12 (24) ◽  
pp. 4139
Author(s):  
Ruirui Wang ◽  
Wei Shi ◽  
Pinliang Dong

The nighttime light (NTL) on the surface of Earth is an important indicator for the human transformation of the world. NTL remotely sensed data have been widely used in urban development, population estimation, economic activity, resource development and other fields. With the increasing use of artificial lighting technology in agriculture, it has become possible to use NTL remote sensing data for monitoring agricultural activities. In this study, National Polar Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) NTL remote sensing data were used to observe the seasonal variation of artificial lighting in dragon fruit cropland in Binh Thuan Province, Vietnam. Compared with the statistics of planted area, area having products and production of dragon fruit by district in the Statistical Yearbook of Binh Thuan Province 2018, values of the mean and standard deviation of NTL brightness have significant positive correlations with the statistical data. The results suggest that the NTL remotely sensed data could be used to reveal some agricultural productive activities such as dragon fruits production accurately by monitoring the seasonal artificial lighting. This research demonstrates the application potential of NTL remotely sensed data in agriculture.


Author(s):  
Liudmila Lischenko ◽  
Volodimir Filipovich ◽  
Anton Mychak ◽  
Natalia Pazynych ◽  
Alexander Teremenko

Methodology of integral estimation of the ecological state of urban areas is examined with remote sensing data. The digitalstudy of spectral descriptions of landscape-functional zones of city onspaceimagesis used. A result of their integrated analysis is the districting of urban area relation to the level of prosperity and environmental conditions. It is proposed to distinguish six levels as follows: comfortable, optimal, satisfactory, inadequate, pre-crisis and emergency. Key words: remote sensing, multi spectral space images, urban landscape, municipal territory, environmental conditions.


2013 ◽  
Vol 10 (5) ◽  
pp. 6153-6192
Author(s):  
F.-J. Chang ◽  
W. Sun

Abstract. The study aims to model regional evaporation that possesses the ability to present the spatial distribution of evaporation across the whole Taiwan by the adaptive network-based fuzzy inference system (ANFIS) based solely on remote sensing data. The remote sensing data used in this study consist of Landsat image products including Enhanced Vegetation Index (EVI) and land surface temperature (LST). The model construction is designed through two types of data allocation (temporal and spatial) driven with the same ten-year data of EVI and LST derived from Landsat images. Evidences indicate the estimation model based solely on remotely sensed data can effectively detect the spatial variation of evaporation and appropriately capture the evaporation trend with acceptable errors of about 1 mm day−1. The results also demonstrate the composite of EVI and LST input to the proposed estimation model improves the accuracy of estimated evaporation values as compared with the model using LST as the only input, which reveals EVI indeed benefits the estimation process. The results suggest Model-T (temporal input allocation) is suitable for making island-wide evaporation estimation while Model-S (spatial input allocation) is suitable for making evaporation estimation at ungauged sites. An island-wide evaporation map for the whole study area (Taiwan Island) is then derived. It concludes the proposed ANFIS model incorporated solely with remote sensing data can reasonably well generate evaporation estimation and is reliable as well as easily applicable for operational estimation of evaporation over large areas where the network of ground-based meteorological gauging stations is not dense enough or readily available.


2021 ◽  
Vol 929 (1) ◽  
pp. 012002
Author(s):  
L R Bikeeva ◽  
Z Kh Safarov ◽  
M G Yuldasheva ◽  
N M Akramova ◽  
Sh A Umarov

Abstract In recent years, remote sensing data are increasingly used in the practice of oil and gas prospecting. This article discusses the main methodological aspects of identifying oil and gas promising structures by using materials for interpreting remote sensing data and a complex of geological and geophysical data. Remotely sensed data exhibit a regional review of the various geological formations and tectonic fracture zone and faults that are otherwise not possible detection by human eyes on the ground. The method of structural interpretation space image allows you to: detail the internal structure of oil and gas regions; to reveal the position and features of the tectonic blocks, structures of the second and third (anticlines, synclines, monoclines, etc.) orders; identify major disruptive violations; identify chains of local structures; fix the transverse structural elements that determine tectonic fragmentation. By deciphering the remote sensing data, the distribution and nature of the lineament network marking disjunctive dislocations and zones of increased fracturing are revealed and analyzed, as well as ring structures are detected, which in most cases indicate local structures of the sedimentary cover at different depth sections. The lithology and lineament interpreted from these multi-level data were integrated with data collected from the ground.


2019 ◽  
Vol 11 (23) ◽  
pp. 2763 ◽  
Author(s):  
Racault ◽  
Abdulaziz ◽  
George ◽  
Menon ◽  
C ◽  
...  

The World Health Organization has estimated the burden of the on-going pandemic of cholera at 1.3 to 4 million cases per year worldwide in 2016, and a doubling of case-fatality-rate to 1.8% in 2016 from 0.8% in 2015. The disease cholera is caused by the bacterium Vibrio cholerae that can be found in environmental reservoirs, living either in free planktonic form or in association with host organisms, non-living particulate matter or in the sediment, and participating in various biogeochemical cycles. An increasing number of epidemiological studies are using land- and water-based remote-sensing observations for monitoring, surveillance, or risk mapping of Vibrio pathogens and cholera outbreaks. Although the Vibrio pathogens cannot be sensed directly by satellite sensors, remotely-sensed data can be used to infer their presence. Here, we review the use of ocean-color remote-sensing data, in conjunction with information on the ecology of the pathogen, to map its distribution and forecast risk of disease occurrence. Finally, we assess how satellite-based information on cholera may help support the Sustainable Development Goals and targets on Health (Goal 3), Water Quality (Goal 6), Climate (Goal 13), and Life Below Water (Goal 14).


Sign in / Sign up

Export Citation Format

Share Document