scholarly journals Sentinel-1 and RADARSAT Constellation Mission InSAR Assessment of Slope Movements in the Southern Interior of British Columbia, Canada

2021 ◽  
Vol 13 (19) ◽  
pp. 3999
Author(s):  
Byung-Hun Choe ◽  
Andrée Blais-Stevens ◽  
Sergey Samsonov ◽  
Jonathan Dudley

Landslides are the most common natural hazard in British Columbia. The province has recorded the largest number of historical landslide fatalities in Canada, and damage to infrastructure comes at a great cost. In order to understand the potential impacts of landslides, radar remote sensing has become a cost-effective method for detecting downslope movements. This study investigates downslope movements in the Southern Interior of British Columbia, Canada, with Sentinel-1 and RADARSAT Constellation Mission (RCM) interferometric synthetic aperture radar (InSAR) data. The 2-dimensional time-series analysis with Sentinel-1 ascending and descending InSAR pairs from October 2017 to June 2021 observed distinct earthflow movements of up to ~15 cm/year in the east–west direction. The Grinder Creek, Red Mountain, Yalakom River, and Retaskit Creek earthflows previously documented are still active, with east–west movements of ~30 cm over the past four years. New RCM data acquired from June 2020 to September 2020 with a 4-day revisit capability were compared to 12-day Sentinel-1 InSAR pairs. The 4-day RCM InSAR pairs at higher spatial resolution showed better performance by detecting relatively small-sized slope movements within a few hundred meters, which were not clearly observed by Sentinel-1. The temporal variabilities observed from the RCM InSAR showed great potential for observing detailed slope movements within a narrower time window.

2020 ◽  
Vol 39 (12) ◽  
pp. 883-892
Author(s):  
Donald W. Vasco ◽  
Jonny Rutqvist ◽  
Pierre Jeanne ◽  
Sergey V. Samsonov ◽  
Craig Hartline

Geodetic observations, often in conjunction with other data, provide a cost-effective means for identifying and characterizing geothermal resources. A review of the various methods reveals how the technology for measuring deformation has advanced considerably in the past few decades. Currently, interferometric synthetic aperture radar is the method of choice for monitoring deformation at a geothermal field. A discussion of geodetic monitoring at The Geysers geothermal field, California, illustrates some of the progress made and the challenges that remain.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 519-532 ◽  
Author(s):  
Mark Crisp ◽  
Richard Riehle

Polyaminopolyamide-epichlorohydrin (PAE) resins are the predominant commercial products used to manufacture wet-strengthened paper products for grades requiring wet-strength permanence. Since their development in the late 1950s, the first generation (G1) resins have proven to be one of the most cost-effective technologies available to provide wet strength to paper. Throughout the past three decades, regulatory directives and sustainability initiatives from various organizations have driven the development of cleaner and safer PAE resins and paper products. Early efforts in this area focused on improving worker safety and reducing the impact of PAE resins on the environment. These efforts led to the development of resins containing significantly reduced levels of 1,3-dichloro-2-propanol (1,3-DCP) and 3-monochloropropane-1,2-diol (3-MCPD), potentially carcinogenic byproducts formed during the manufacturing process of PAE resins. As the levels of these byproducts decreased, the environmental, health, and safety (EH&S) profile of PAE resins and paper products improved. Recent initiatives from major retailers are focusing on product ingredient transparency and quality, thus encouraging the development of safer product formulations while maintaining performance. PAE resin research over the past 20 years has been directed toward regulatory requirements to improve consumer safety and minimize exposure to potentially carcinogenic materials found in various paper products. One of the best known regulatory requirements is the recommendations of the German Federal Institute for Risk Assessment (BfR), which defines the levels of 1,3-DCP and 3-MCPD that can be extracted by water from various food contact grades of paper. These criteria led to the development of third generation (G3) products that contain very low levels of 1,3-DCP (typically <10 parts per million in the as-received/delivered resin). This paper outlines the PAE resin chemical contributors to adsorbable organic halogens and 3-MCPD in paper and provides recommendations for the use of each PAE resin product generation (G1, G1.5, G2, G2.5, and G3).


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2005 ◽  
Vol 40 (4) ◽  
pp. 418-430 ◽  
Author(s):  
Markus L. Heinrichs ◽  
Brian F. Cumming ◽  
Kathleen R. Laird ◽  
J. Sanford Hart

Abstract Diatom and chironomid analysis of sediments encompassing the past 400 years from Bouchie Lake, British Columbia, suggests two distinct periods of limnological conditions. Prior to 1950 AD, Fragilaria construens and F. pinnata are the most common diatom species, and Chironomus, Procladius and Tanytarsini dominate the chironomid record. Moderately low nutrient concentrations consistent with oligo-mesotrophic lakes are inferred. From 1950, the diatom assemblage is dominated by Stephanodiscus parvus, a eutrophic indicator, whereas the chironomid communities show a relative increase in littoral taxa coincident with lower head capsule abundance. Higher nutrient levels, specifically total phosphorus, which increased from 8 µg L-1 prior to 1950 to 20 µg L-1 currently, are coincident with midge communities indicative of lower oxygen concentrations. Observed biotic changes and nutrient levels inferred from the sediment core correspond to historical land-use changes.


1996 ◽  
Vol 33 (8) ◽  
pp. 23-29 ◽  
Author(s):  
I. Dor ◽  
N. Ben-Yosef

About one hundred and fifty wastewater reservoirs store effluents for irrigation in Israel. Effluent qualities differ according to the inflowing wastewater quality, the degree of pretreatment and the operational parameters. Certain aspects of water quality like concentration of organic matter, suspended solids and chlorophyll are significantly correlated with the water column transparency and colour. Accordingly optical images of the reservoirs obtained from the SPOT satellite demonstrate pronounced differences correlated with the water quality. The analysis of satellite multispectral images is based on a theoretical model. The model calculates, using the radiation transfer equation, the volume reflectance of the water body. Satellite images of 99 reservoirs were analyzed in the chromacity space in order to classify them according to water quality. Principal Component Analysis backed by the theoretical model increases the method sensitivity. Further elaboration of this approach will lead to the establishment of a time and cost effective method for the routine monitoring of these hypertrophic wastewater reservoirs.


2013 ◽  
Vol 10 (3) ◽  
pp. 159-163 ◽  
Author(s):  
Jun Peng ◽  
Yue Feng ◽  
Zhu Tao ◽  
Yingjie Chen ◽  
Xiangnan Hu

2001 ◽  
Vol 47 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Magnus Jonsson ◽  
Joyce Carlson ◽  
Jan-Olof Jeppsson ◽  
Per Simonsson

Abstract Background: Electrophoresis of serum samples allows detection of monoclonal gammopathies indicative of multiple myeloma, Waldenström macroglobulinemia, monoclonal gammopathy of undetermined significance, and amyloidosis. Present methods of high-resolution agarose gel electrophoresis (HRAGE) and immunofixation electrophoresis (IFE) are manual and labor-intensive. Capillary zone electrophoresis (CZE) allows rapid automated protein separation and produces digital absorbance data, appropriate as input for a computerized decision support system. Methods: Using the Beckman Paragon CZE 2000 instrument, we analyzed 711 routine clinical samples, including 95 monoclonal components (MCs) and 9 cases of Bence Jones myeloma, in both the CZE and HRAGE systems. Mathematical algorithms developed for the detection of monoclonal immunoglobulins (MCs) in the γ- and β-regions of the electropherogram were tested on the entire material. Additional algorithms evaluating oligoclonality and polyclonal concentrations of immunoglobulins were also tested. Results: CZE electropherograms corresponded well with HRAGE. Only one IgG MC of 1 g/L, visible on HRAGE, was not visible after CZE. Algorithms detected 94 of 95 MCs (98.9%) and 100% of those visible after CZE. Of 607 samples lacking an MC on HRAGE, only 3 were identified by the algorithms (specificity, 99%). Algorithms evaluating total gammaglobulinemia and oligoclonality also identified several cases of Bence Jones myeloma. Conclusions: The use of capillary electrophoresis provides a modern, rapid, and cost-effective method of analyzing serum proteins. The additional option of computerized decision support, which provides rapid and standardized interpretations, should increase the clinical availability and usefulness of protein analyses in the future.


Author(s):  
Trine S. Mykkeltvedt ◽  
Sarah E. Gasda ◽  
Tor Harald Sandve

AbstractCarbon-neutral oil production is one way to improve the sustainability of petroleum resources. The emissions from produced hydrocarbons can be offset by injecting capture CO$$_{2}$$ 2 from a nearby point source into a saline aquifer for storage or a producing oil reservoir. The latter is referred to as enhanced oil recovery (EOR) and would enhance the economic viability of CO$$_{2}$$ 2 sequestration. The injected CO$$_{2}$$ 2 will interact with the oil and cause it to flow more freely within the reservoir. Consequently, the overall recovery of oil from the reservoir will increase. This enhanced oil recovery (EOR) technique is perceived as the most cost-effective method for disposing captured CO$$_{2}$$ 2 emissions and has been performed for many decades with the focus on oil recovery. The interaction between existing oil and injected CO$$_{2}$$ 2 needs to be fully understood to effectively manage CO$$_{2}$$ 2 migration and storage efficiency. When CO$$_{2}$$ 2 and oil mix in a fully miscible setting, the density can change non-linearly and cause density instabilities. These instabilities involve complex convective-diffusive processes, which are hard to model and simulate. The interactions occur at the sub-centimeter scale, and it is important to understand its implications for the field scale migration of CO$$_{2}$$ 2 and oil. In this work, we simulate gravity effects, namely gravity override and convective mixing, during miscible displacement of CO$$_{2}$$ 2 and oil. The flow behavior due to the competition between viscous and gravity effects is complex, and can only be accurately simulated with a very fine grid. We demonstrate that convection occurs rapidly, and has a strong effect on breakthrough of CO$$_{2}$$ 2 at the outlet. This work for the first time quantifies these effects for a simple system under realistic conditions.


Sign in / Sign up

Export Citation Format

Share Document