scholarly journals Modelling of Vegetation Dynamics from Satellite Time Series to Determine Proglacial Primary Succession in the Course of Global Warming—A Case Study in the Upper Martell Valley (Eastern Italian Alps)

2021 ◽  
Vol 13 (21) ◽  
pp. 4450
Author(s):  
Bettina Knoflach ◽  
Katharina Ramskogler ◽  
Matthew Talluto ◽  
Florentin Hofmeister ◽  
Florian Haas ◽  
...  

Satellite-based long-term observations of vegetation cover development in combination with recent in-situ observations provide a basis to better understand the spatio-temporal changes of vegetation patterns, their sensitivity to climate drivers and thus climatic impact on proglacial landscape development. In this study we combined field investigations in the glacier forelands of Fürkele-, Zufall- and Langenferner (Ortles-Cevedale group/Eastern Italian Alps) with four different Vegetation Indices (VI) from Landsat scenes in order to test the suitability for modelling an area-wide vegetation cover map by using a Bayesian beta regression model (RStan). Since the model with the Normalized Difference Vegetation Index (NDVI) as predictor showed the best results, it was used to calculate a vegetation cover time series (1986–2019). The alteration of the proglacial areas since the end of the Little Ice Age (LIA) was analyzed from digital elevation models based on Airborne Laser Scanning (ALS) data and areal images, orthophotos, historical maps and field mapping campaigns. Our results show that a massive glacier retreat with an area loss of 8.1 km2 (56.9%; LIA–2019) resulted in a constant enlargement of the glacier forelands, which has a statistically significant impact on the degree of vegetation cover. The area covered by vegetation increased from 0.25 km2 (5.6%) in 1986 to 0.90 km2 (11.2%) in 2019 with a significant acceleration of the mean annual changing rate. As patterns of both densification processes and plant colonization at higher elevations can be reflected by the model results, we consider in-situ observations combined with NDVI time series to be powerful tools for monitoring vegetation cover changes in alpine proglacial areas.

2018 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long times series. It is produced from a new high-resolution climatology of temperature and salinity on a 1/8° regular grid based on historical high quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The spatial patterns of heat and salt content shifts demonstrate in greater detail than ever before that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salting since 1950 with acceleration during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle indicating that the natural large scale atmospheric variability could be superimposed on to the warming trend. This product is an observations-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in-situ observations averaged over decades in order to smooth the decadal variability and reveal the long term trends with more accuracy. It can provide a valuable contribution to the modellers' community, next to the satellite-based products and serve as a baseline for the evaluation of climate-change model simulations contributing thus to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available here: https://doi.org/10.5281/zenodo.1210100.


2021 ◽  
Vol 117 (7/8) ◽  
Author(s):  
Nndanduleni Muavhi

This study presents a simple approach of spatiotemporal change detection of vegetation cover based on analysis of time series remotely sensed images. The study was carried out at Thathe Vondo Area, which is characterised by episodic variation of vegetation gain and loss. This variation is attributable to timber and tea plantations and their production cycles, which periodically result in either vegetation gain or loss. The approach presented here was implemented on two ASTER images acquired in 2007 and 2017. It involved the combined use of band combination, unsupervised image classification and Normalised Difference Vegetation Index (NDVI) techniques. True colour composite (TCC) images for 2007 and 2017 were created from combination of bands 1, 2 and 3 in red, blue and green, respectively. The difference image of the TCC images was then generated to show the inconsistencies of vegetation cover between 2007 and 2017. For analytical simplicity and interpretability, the difference image was subjected to ISODATA unsupervised classification, which clustered pixels in the difference image into eight classes. Two ISODATA derived classes were interpreted as vegetation gain and one as vegetation loss. These classes were confirmed as regions of vegetation gain and loss by NDVI values of 2007 and 2017. In addition, the polygons of vegetation gain and loss regions were created and superimposed over the TCC images to further demonstrate the spatiotemporal vegetation change in the area. The vegetation change statistics show vegetation gain and loss of 10.62% and 2.03%, respectively, implying a vegetation gain of 8.59% over the selected decade.


2020 ◽  
Vol 12 (24) ◽  
pp. 4058
Author(s):  
Hassan Bazzi ◽  
Nicolas Baghdadi ◽  
Ibrahim Fayad ◽  
François Charron ◽  
Mehrez Zribi ◽  
...  

Better management of water consumption and irrigation schedule in irrigated agriculture is essential in order to save water resources, especially at regional scales and under changing climatic conditions. In the context of water management, the aim of this study is to monitor irrigation activities by detecting the irrigation episodes at plot scale using the Sentinel-1 (S1) C-band SAR (synthetic-aperture radar) time series over intensively irrigated grassland plots located in the Crau plain of southeast France. The method consisted of assessing the newly developed irrigation detection model (IDM) at plot scale over the irrigated grassland plots. First, four S1-SAR time series acquired from four different S1-SAR acquisitions (different S1 orbits), each at six-day revisit time, were obtained over the study site. Next, the IDM was applied at each available SAR image from each S1-SAR series to obtain an irrigation indicator at each SAR image (no, low, medium, or high irrigation possibility). Then, the irrigation indicators obtained at each image from each S1-SAR time series (four series) were added and combined by threshold value criteria to determine the existence or absence of an irrigation event. Finally, the performance of the IDM for irrigation detection was assessed by comparing the in situ recorded irrigation events at each plot and the detected irrigation events. The results show that using only the VV polarization, 82.4% of the in situ registered irrigation events are correctly detected with an F_score value reaching 73.8%. Less accuracy is obtained using only the VH polarization, where 79.9% of the in situ irrigation events are correctly detected with an F_score of 72.2%. The combined use of the VV and VH polarization showed that 74.1% of the irrigation events are detected with a higher F_score value of 76.4%. The analysis of the undetected irrigation events revealed that, in the presence of very well-developed vegetation cover (normalized difference of vegetation index (NDVI) ≥ 0.8); higher uncertainty in irrigation detection is observed, where 80% of the undetected events correspond to an NDVI value greater than 0.8. The results also showed that small-sized plots encounter more false irrigation detections than large-sized plots certainly because the pixel spacing of S1 data (10 m × 10 m) is not adapted to small size plots. The obtained results prove the efficiency of the S1 C-band data and the IDM for detecting irrigation events at the plot scale, which would help in improving the irrigation water management at large scales especially with availability and global coverage of the S1 product.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4285 ◽  
Author(s):  
Shubha Sathyendranath ◽  
Robert Brewin ◽  
Carsten Brockmann ◽  
Vanda Brotas ◽  
Ben Calton ◽  
...  

Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean-colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel.


2019 ◽  
Vol 49 (5) ◽  
pp. 1183-1200 ◽  
Author(s):  
Jenson V. George ◽  
P. N. Vinayachandran ◽  
V. Vijith ◽  
V. Thushara ◽  
Anoop A. Nayak ◽  
...  

AbstractDuring the Bay of Bengal (BoB) Boundary Layer Experiment (BoBBLE) in the southern BoB, time series of microstructure measurements were obtained at 8°N, 89°E from 4 to 14 July 2016. These observations captured events of barrier layer (BL) erosion and reformation. Initially, a three-layer structure was observed: a fresh surface mixed layer (ML) of thickness 10–20 m; a BL below of 30–40-m thickness with similar temperature but higher salinity; and a high salinity core layer, associated with the Summer Monsoon Current. Each of these three layers was in relative motion to the others, leading to regions of high shear at the interfaces. However, the destabilizing influence of the shear regions was not enough to overcome the haline stratification, and the three-layer structure was preserved. A salinity budget using in situ observations suggested that during the BL erosion, differential advection brought high salinity surface waters (34.5 psu) with weak stratification to the time series location and replaced the three-layer structure with a deep ML (~60 m). The resulting weakened stratification at the time series location then allowed atmospheric wind forcing to penetrate deeper. The turbulent kinetic energy dissipation rate and eddy diffusivity showed elevated values above 10−7 W kg−1 and 10−4 m2 s−1, respectively, in the upper 60 m. Later, the surface salinity decreased again (33.8 psu) through differential horizontal advection, stratification became stronger and elevated mixing rates were confined to the upper 20 m, and the BL reformed. A 1D model experiment suggested that in the study region, differential advection of temperature–salinity characteristics is essential for the maintenance of BL and to the extent to which mixing penetrates the water column.


2021 ◽  
Vol 49 (4) ◽  
pp. 63-85
Author(s):  
P. Yu. Romanov ◽  
N. A. Romanova

Trends in the mean sea-level pressure (SLP) in Antarctica in the last four decades (1980– 2020) have been examined using in situ observations and reanalysis data. The analysis involved time series of monthly mean, season-mean and yearly-mean values of the SLP derived from four reanalysis datasets, NCEP/NCAR, ERA5, JRA55, MERRA2, and from surface observations acquired from the Reference Antarctic Data for Environmental Research (READER) dataset. With this data we have evaluated the trends, characterized their seasonal peculiarities and variation across the high-latitude region of the Southern Hemisphere. The results of the analysis confirmed the dominance of decreasing trends in the annual mean SLP in Antarctica. Larger negative trends were found in the Western Antarctica with the most pronounced pressure drop in the South Pacific. The long-term decrease in the annual mean SLP in Antarctica was due to strong negative pressure trends in the austral summer and fall season whereas in winter and in spring the trends turn to mixed and mostly positive. The comparison of multiyear time series of SLP reanalysis data with in situ observations at Antarctic stations revealed a considerable overestimate of negative SLP trends in the NCEP/NCAR dataset. Among the four examined reanalysis datasets, ERA5 provided the best agreement with the station data on the annual mean and monthly mean SLP trend values.


2018 ◽  
Vol 10 (4) ◽  
pp. 1829-1842 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long time series. It is produced from a new high-resolution climatology of temperature and salinity on a 1∕8∘ regular grid based on historical high-quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The two successive periods are chosen according to the standard WMO climate normals. The spatial patterns of heat and salt content shifts demonstrate that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salinification since 1950 that has accelerated during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle, indicating that the natural large-scale atmospheric variability could be superimposed onto the warming trend. This product is an observation-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in situ observations averaged over decades in order to smooth the decadal variability and reveal the long-term trends. It can provide a valuable contribution to the modellers' community, next to the satellite-based products, and serve as a baseline for the evaluation of climate-change model simulations, thus contributing to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available in netCDF at the following sources: annual and seasonal T∕S anomalies (https://doi.org/10.5281/zenodo.1408832), annual and seasonal T∕S vertical averaged anomalies (https://doi.org/10.5281/zenodo.1408929), annual and seasonal areal density of OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1408877), annual and seasonal linear trends of T∕S, OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1408917), annual and seasonal time series of T∕S, OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1411398), and differences of two 30-year averages of annual and seasonal T∕S, OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1408903).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea Fischer ◽  
Thomas Fickert ◽  
Gabriele Schwaizer ◽  
Gernot Patzelt ◽  
Günther Groß

Abstract Monitoring of plant succession in glacier forelands has so far been restricted to field sampling. In this study, in situ vegetation sampling along a chronosequence between Little Ice Age (LIA) maximum extent and the recent glacier terminus at Jamtalferner in the Austrian Alps is compared to time series of the Normalized Difference Vegetation Index (NDVI) calculated from 13 Landsat scenes (1985–2016). The glacier terminus positions at 16 dates between the LIA maximum and 2015 were analysed from historical maps, orthophotos and LiDAR images. We sampled plots of different ages since deglaciation, from very recent to approx. 150 years: after 100 years, roughly 80% of the ground is covered by plants and ground cover does not increase significantly thereafter. The number of species increases from 10–20 species on young sites to 40–50 species after 100 years. The NDVI increases with the time of exposure from a mean of 0.11 for 1985–1991 to 0.20 in 2009 and 0.27 in 2016. As the increase in ground cover is clearly reproduced by the NDVI (R² ground cover/NDVI 0.84) – even for sparsely vegetated areas –, we see a great potential of satellite-borne NDVI to perform regional characterizations of glacier forelands for hydrological, ecological and hazard management-related applications.


2020 ◽  
Author(s):  
Lars Uphus ◽  
Annette Menzel

<p>Using RGB camera data (e.g. webcams, wildlife cameras) has great potential to measure forest phenology over climate gradients, because of its very high temporal resolution, while at the same time being more objective and less time consuming than in situ observations. To make images useful for the purpose of measuring phenological events, such as Start of Season (SOS) and End of Season (EOS), there is need to derive Regions of Interest (ROI) objectively and (semi-)automatically. In order to answer this need, Bothmann et al. (2017) proposed a method which randomly sets a number of pinpricks in the image and calculates how greenness over time from all other pixels correlates to these different pinpricks. Subsequently, ROIs are created by discarding the pixels with low correlation, using multiple thresholds. Despite its advantage of being automated and more objective compared to prevailing expert-based ROIs, and therefore its potential applicability for phenological research using a large amount of cameras, the method has not been reproduced for this purpose so far. Therefore, we assess here how well this method is able to separate foliage of different deciduous species from evergreens and phenologically irrelevant components in time-lapse wildlife camera data and in that way how suitable it is in explaining variation in phenology over a temperature gradient. We used 73 Cuddleback wildlife cameras troughout Bavaria which were installed within nine quadrants of 6*6 kilometers spanning a temperature gradient of 2.5°C. Hourly taken images of deciduous forests in spring, summer and autumn 2019 were analysed. Half of them were facing canopy, and half of them were facing understory. We applied the principles of the method from Bothmann et al. (2017) and assigned the best matching ROI to foliage of <em>Fagus sylvatica</em> or other deciduous species. Within this ROI, mean Green Chromatic Coordinate (GCC), a greenness index, over all pixels within the ROI, was derived per time-stamp. Afterwards, a time-series was calculated on these GCC values and with a suitable combination of curve-fitting techniques, SOS and EOS were derived, expressed in Day of Year (DOY). We compared these SOS and EOS dates with weekly in situ observations of spring and autumn phenology, which were taken in the same quadrants. Despite that Bothmann's method was developed on a single tower-mounted scientific webcam which viewed on canopy from above, while we made use of wildlife cameras at 73 different locations facing either understory perpendicular or canopy from below, it was able to distinguish <em>F. sylvatica</em> and other deciduous foliage from phenologically less relevant information. Time-series derived from these ROIs were able to explain variability in phenology between understory and canopy and over the temperature gradient similarly and supplementary to in situ observations. </p>


2019 ◽  
Vol 11 (12) ◽  
pp. 1398 ◽  
Author(s):  
Xuanlong Ma ◽  
Alfredo Huete ◽  
Ngoc Nguyen Tran

Remote sensing of phenology usually works at the regional and global scales, which imposes considerable variations in the solar zenith angle (SZA) across space and time. Variations in SZA alters the shape and profile of the surface reflectance and vegetation index (VI) time series, but this effect on remote-sensing-derived vegetation phenology has not been adequately evaluated. The objective of this study is to understand the behaviour of VIs response to SZA, and to further improve the interpretation of satellite observed vegetation dynamics, across space and time. In this study, the sensitivity of two widely used VIs—the normalised difference vegetation index (NDVI) and the enhanced vegetation index (EVI)—to SZA was investigated at four northern Australian savanna sites, over a latitudinal distance of 9.8° (~1100 km). Complete time series of surface reflectances, as acquired with different SZA configurations, were simulated using Bidirectional Reflectance Distribution Function (BRDF) parameters provided by MODerate Resolution Imaging Spectroradiometer (MODIS). The sun-angle dependency of the four phenological transition dates were assessed. Results showed that while NDVI was very sensitive to SZA, such sensitivity was nearly absent for EVI. A negative correlation was also observed between NDVI sensitivity to SZA and vegetation cover, with sensitivity declining to the same level as EVI when vegetation cover was high. Different sun-angle configurations resulted in considerable variations in the shape and magnitude of the phenological profiles. The sensitivity of VIs to SZA was generally greater during the dry season (with only active trees present) than in the wet season (with both active trees and grasses), thus, the sun-angle effect on VIs was phenophase-dependent. The sun-angle effect on NDVI time series resulted in considerable differences in the phenological metrics across different sun-angle configurations. Across four sites, the sun-angle effect caused 15.5 days, 21.6 days, and 20.5 days differences in the start, peak, and the end of the growing season derived from NDVI time series, with seasonally varying SZA at local solar noon, as compared to those metrics derived from NDVI time series with fixed SZA. In comparison, those differences in the start, peak, and end of the growing season for EVI were significantly smaller, with only 4.8 days, 4.9 days, and 3 days, respectively. Our results suggest the potential importance of considering the seasonal SZA effect on VI time series prior to the retrieval of phenological metrics.


Sign in / Sign up

Export Citation Format

Share Document