scholarly journals Assessment of Wildfire Activity Development Trends for Eastern Australia Using Multi-Sensor Earth Observation Data

2021 ◽  
Vol 13 (24) ◽  
pp. 4975
Author(s):  
Michael Nolde ◽  
Norman Mueller ◽  
Günter Strunz ◽  
Torsten Riedlinger

Increased fire activity across the Amazon, Australia, and even the Arctic regions has received wide recognition in the global media in recent years. Large-scale, long-term analyses are required to postulate if these incidents are merely peaks within the natural oscillation, or rather the consequence of a linearly rising trend. While extensive datasets are available to facilitate the investigation of the extent and frequency of wildfires, no means has been available to also study the severity of the burnings on a comparable scale. This is now possible through a dataset recently published by the German Aerospace Center (DLR). This study exploits the possibilities of this new dataset by exemplarily analyzing fire severity trends on the Australian East coast for the past 20 years. The analyzed data is based on 3503 tiles of the ESA Sentinel-3 OLCI instrument, extended by 9612 granules of the NASA MODIS MOD09/MYD09 product. Rising trends in fire severity could be found for the states of New South Wales and Victoria, which could be attributed mainly to developments in the temperate climate zone featuring hot summers without a dry season (Cfa). Within this climate zone, the ecological units featuring needleleaf and evergreen forest are found to be mainly responsible for the increasing trend development. The results show a general, statistically significant shift of fire activity towards the affection of more woody, ecologically valuable vegetation.

2021 ◽  
Author(s):  
Rebecca Scholten ◽  
Coumou Dim ◽  
Luo Fei ◽  
Sander Veraverbeke

<p>In the summer of 2020, extreme fires have raged in northeastern Siberia, many of them within the Arctic Circle burning in ecotonal larch forest and tundra ecosystems. This unprecedented increase in fire activity within the Arctic Circle has been linked to record-high temperatures measured in the region, as well as to high lightning activity.</p><p>In mid-latitudes, the pronounced and long-lasting heatwaves of the last decade have been linked to amplified Rossby waves connected with weak atmospheric circulation. These amplified waves tend to phase-lock in preferred positions and thereby lead to more persistent summer weather. Linkages between atmospheric teleconnections and boreal wildfires exist for some regions, yet the influence of wave dynamics on arctic-boreal wildfires is unknown. We explored relationships between wave dynamics, heatwaves, and the unprecedented fire activity in Siberia in 2020 to assess whether the recent surge in arctic-boreal fires in Siberia is driven by large-scale atmospheric dynamics.</p><p>We determined wave amplitudes as phase positions by applying fast Fourier transformation on weekly averaged mid- to high-latitudinal mean meridional wind velocities at the 250 mb level from ERA5 reanalysis data. Gridded percentage area burned between 2001 and 2020 was derived from the Moderate Resolution Imaging Spectrometer (MODIS) Burned Area product (MCD64A1). We then quantified the importance of Rossby wave patterns on fire activity clustered by latitude in eastern Siberia.</p>


2020 ◽  
Vol 12 (17) ◽  
pp. 2774
Author(s):  
Marta Konik ◽  
Piotr Kowalczuk ◽  
Monika Zabłocka ◽  
Anna Makarewicz ◽  
Justyna Meler ◽  
...  

The Nordic Seas and the Fram Strait regions are a melting pot of a number of water masses characterized by distinct optical water properties. The warm Atlantic Waters transported from the south and the Arctic Waters from the north, combined with the melt waters contributing to the Polar Waters, mediate the dynamic changes of the year-to-year large-scale circulation patterns in the area, which often form complex frontal zones. In the last decade, moreover, a significant shift in phytoplankton phenology in the area has been observed, with a certain northward expansion of temperate phytoplankton communities into the Arctic Ocean which could lead to a deterioration in the performance of remote sensing algorithms. In this research, we exploited the capability of the satellite sensors to monitor those inter-annual changes at basin scales. We propose locally adjusted algorithms for retrieving chlorophyll a concentrations Chla, absorption by particles ap at 443 and 670 nm, and total absorption atot at 443 and 670 nm developed on the basis of intensive field work conducted in 2013–2015. Measured in situ hyper spectral remote sensing reflectance has been used to reconstruct the MODIS and OLCI spectral channels for which the proposed algorithms have been adapted. We obtained MNB ≤ 0.5% for ap(670) and ≤3% for atot(670) and Chla. RMS was ≤30% for most of the retrieved optical water properties except ap(443) and Chla. The mean monthly mosaics of ap(443) computed on the basis of the proposed algorithm were used for reconstructing the spatial and temporal changes of the phytoplankton biomass in 2013–2015. The results corresponded very well with in situ measurements.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Igor Drobyshev ◽  
Yves Bergeron ◽  
Nina Ryzhkova ◽  
Alexander Kryshen

Understanding factors driving fire activity helps reveal the degree and geographical variability in the resilience of boreal vegetation to large scale climate forces. We studied the association between sea ice cover in the Baffin Bay and the Labrador Sea and observational records of forest fires in two Nordic countries (Norway and Sweden) over 1913–2017. We found a positive correlation between ice proxies and regional fire activity records suggesting that the Arctic climate and the associated changes in North Atlantic circulation exercise an important control on the levels of fire activity in Scandinavia. Changes in the sea cover are likely correlated with the dynamic of the North Atlantic Current. These dynamics may favor the development of the drought conditions in Scandinavia through promoting persistent high-pressure systems over the Scandinavian boreal zone during the spring and summer. These periods are, in turn, associated with an increased water deficit in forest fuels, leading to a regionally increased fire hazard. The Arctic climate will likely be an important future control of the boreal fire activity in the Nordic region.


2020 ◽  
Author(s):  
Casey Kirchhoff ◽  
Corey Thomas Callaghan ◽  
David A. Keith ◽  
Dony Indiarto ◽  
Guy Taseski ◽  
...  

The unprecedented scale of the 2019-2020 eastern Australian bushfires exemplifies the challenges that scientists and conservation biologists face monitoring the effects of biodiversity in the aftermath of large-scale environmental disturbances. After a large-scale disturbance there are conservation policy and management actions that need to be both timely and informed by data. By working with the public, often widely spread out over such disturbed areas, citizen science offers a unique opportunity to collect data on biodiversity responses at the appropriate scale. We detail a citizen science project, hosted through iNaturalist, launched shortly after the 2019-2020 bushfire season in eastern Australia. It rapidly (1) provided accurate data on fire severity, relevant to future recovery; and (2) delivered data on a wide range (mosses to mammals) of biodiversity responses at a scale that matched the geographic extent of these fires.


2019 ◽  
Vol 488 (4) ◽  
pp. 439-442
Author(s):  
V. A. Volkov ◽  
A. V. Mushta ◽  
D. M. Demchev

Based on the 39-year satellite observation data series (1978-2017), three main types of large-scale sea-ice drift field in the Arctic Ocean (AO), characteristic of the winter season, were identified. The types of atmospheric circulation that form the structure of the drift fields are identified, the mechanism of the effect of changes in the drift fields on the interannual variations in the ice cover of the AO is described.


2022 ◽  
Author(s):  
Jukka Rintala ◽  
M. Hario ◽  
K. Laursen ◽  
A. P. Møller

Abstract Migratory animals experience very different environmental conditions at different times of the year, i.e., at the breeding grounds, during migration, and in winter. The long-tailed duck Clangula hyemalis breeds in the Arctic regions of the northern hemisphere and migrates to temperate climate zones, where it winters in marine environments. The breeding success of the long-tailed duck is affected by the abundances of predators (mainly Arctic fox Alopex lagopus) and their main prey species, lemmings Lemmus sibiricus and Dicrostonyx torquatus, whose population fluctuation is subject to climate change. In the winter quarters, long-tailed ducks mainly eat the blue mussel Mytilus edulis. We examined how North-west Siberian lemming dynamics affect long-tailed duck breeding success via predation pressure and how nutrient availability in the Baltic Sea influences long-tailed duck population size via mussel biomass and quality. The long-tailed duck population dynamics was predator-driven on the breeding grounds and resource-driven on the wintering grounds. Nutrients from fertilizer runoff from farmland stimulate mussel stocks and quality, supporting high long-tailed duck population sizes. The applied hierarchical analysis combining several trophic levels can be used for evaluating large-scale environmental factors that affect the population dynamics and abundance of migrants from one environment to another.


2022 ◽  
Vol preprint (2022) ◽  
Author(s):  
David Lindenmayer ◽  
Elle Bowd ◽  
Chris MacGregor ◽  
Lachlan McBurney

ABSTRACT Fire can have marked impacts on biodiversity and on ecosystem condition. However, it is the sequence of multiple fires over a prolonged period of time which can have the most marked effects on biodiversity and on ecosystem condition. A good understanding of these effects comes from long-term studies. In this article we outline some of the key perspectives on the effects of fire on ecosystems and biodiversity from two large-scale, long-term monitoring studies in south-eastern Australia. These are studies in the montane ash forests of the Central Highlands of Victoria and at Booderee National Park in the Jervis Bay Territory. These studies have shown that the effects of fires are strongly influenced by: (1) The condition of an ecosystem before a fire (e.g. the age of a forest at the time it is burnt). (2) Conditions after the fire such as the extent of herbivory in regenerating vegetation and whether the ecosystem is subject to post-fire (salvage) logging. (3) Fire history (e.g. the number of past fires and the time since the previous fire). And, (4) Interactions between fire and other ecosystem drivers such as logging. We discuss some of the key implications for conservation and resource management that arise from these studies including the need to: (a) Reduce the number of stressors in some ecosystems to facilitate post-fire recovery. (b) Recognize that pre-fire human disturbances can elevate fire severity in some forest ecosystems, with corresponding negative effects on elements of the biota, and, (c) Acknowledge the inherent patchiness of wildfires and the value of unburnt areas and places burnt at low severity as critical refugia for some species; it is critical that these locations are managed accordingly (e.g. by limited additional disturbances within them). Finally, many of the insights discussed in this article have emerged only through long-term studies. More long-term monitoring and research is needed to truly understand and better manage fire in Australian ecosystems.


2021 ◽  
Vol 13 (11) ◽  
pp. 2174
Author(s):  
Lijian Shi ◽  
Sen Liu ◽  
Yingni Shi ◽  
Xue Ao ◽  
Bin Zou ◽  
...  

Polar sea ice affects atmospheric and ocean circulation and plays an important role in global climate change. Long time series sea ice concentrations (SIC) are an important parameter for climate research. This study presents an SIC retrieval algorithm based on brightness temperature (Tb) data from the FY3C Microwave Radiation Imager (MWRI) over the polar region. With the Tb data of Special Sensor Microwave Imager/Sounder (SSMIS) as a reference, monthly calibration models were established based on time–space matching and linear regression. After calibration, the correlation between the Tb of F17/SSMIS and FY3C/MWRI at different channels was improved. Then, SIC products over the Arctic and Antarctic in 2016–2019 were retrieved with the NASA team (NT) method. Atmospheric effects were reduced using two weather filters and a sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect. Compared with the SIC product of National Snow and Ice Data Center (NSIDC), the average relative difference of sea ice extent of the Arctic and Antarctic was found to be acceptable, with values of −0.27 ± 1.85 and 0.53 ± 1.50, respectively. To decrease the SIC error with fixed tie points (FTPs), the SIC was retrieved by the NT method with dynamic tie points (DTPs) based on the original Tb of FY3C/MWRI. The different SIC products were evaluated with ship observation data, synthetic aperture radar (SAR) sea ice cover products, and the Round Robin Data Package (RRDP). In comparison with the ship observation data, the SIC bias of FY3C with DTP is 4% and is much better than that of FY3C with FTP (9%). Evaluation results with SAR SIC data and closed ice data from RRDP show a similar trend between FY3C SIC with FTPs and FY3C SIC with DTPs. Using DTPs to present the Tb seasonal change of different types of sea ice improved the SIC accuracy, especially for the sea ice melting season. This study lays a foundation for the release of long time series operational SIC products with Chinese FY3 series satellites.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Ansgar Schanz ◽  
Klemens Hocke ◽  
Niklaus Kämpfer ◽  
Simon Chabrillat ◽  
Antje Inness ◽  
...  

In this study, we compare the diurnal variation in stratospheric ozone of the MACC (Monitoring Atmospheric Composition and Climate) reanalysis, ECMWF Reanalysis Interim (ERA-Interim), and the free-running WACCM (Whole Atmosphere Community Climate Model). The diurnal variation of stratospheric ozone results from photochemical and dynamical processes depending on altitude, latitude, and season. MACC reanalysis and WACCM use similar chemistry modules and calculate a similar diurnal cycle in ozone when it is caused by a photochemical variation. The results of the two model systems are confirmed by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and three selected sites of the Network for Detection of Atmospheric Composition Change (NDACC) at Mauna Loa, Hawaii (tropics), Bern, Switzerland (midlatitudes), and Ny-Ålesund, Svalbard (high latitudes). On the other hand, the ozone product of ERA-Interim shows considerably less diurnal variation due to photochemical variations. The global maxima of diurnal variation occur at high latitudes in summer, e.g., near the Arctic NDACC site at Ny-Ålesund, Svalbard. The local OZORAM radiometer observes this effect in good agreement with MACC reanalysis and WACCM. The sensed diurnal variation at Ny-Ålesund is up to 8% (0.4 ppmv) due to photochemical variations in summer and negligible during the dynamically dominated winter. However, when dynamics play a major role for the diurnal ozone variation as in the lower stratosphere (100–20 hPa), the reanalysis models ERA-Interim and MACC which assimilate data from radiosondes and satellites outperform the free-running WACCM. Such a domain is the Antarctic polar winter where a surprising novel feature of diurnal variation is indicated by MACC reanalysis and ERA-Interim at the edge of the polar vortex. This effect accounts for up to 8% (0.4 ppmv) in both model systems. In summary, MACC reanalysis provides a global description of the diurnal variation of stratospheric ozone caused by dynamics and photochemical variations. This is of high interest for ozone trend analysis and other research which is based on merged satellite data or measurements at different local time.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 220
Author(s):  
Emil Khalikov

The intrinsic spectra of some distant blazars known as “extreme TeV blazars” have shown a hint at an anomalous hardening in the TeV energy region. Several extragalactic propagation models have been proposed to explain this possible excess transparency of the Universe to gamma-rays starting from a model which assumes the existence of so-called axion-like particles (ALPs) and the new process of gamma-ALP oscillations. Alternative models suppose that some of the observable gamma-rays are produced in the intergalactic cascades. This work focuses on investigating the spectral and angular features of one of the cascade models, the Intergalactic Hadronic Cascade Model (IHCM) in the contemporary astrophysical models of Extragalactic Magnetic Field (EGMF). For IHCM, EGMF largely determines the deflection of primary cosmic rays and electrons of intergalactic cascades and, thus, is of vital importance. Contemporary Hackstein models are considered in this paper and compared to the model of Dolag. The models assumed are based on simulations of the local part of large-scale structure of the Universe and differ in the assumptions for the seed field. This work provides spectral energy distributions (SEDs) and angular extensions of two extreme TeV blazars, 1ES 0229+200 and 1ES 0414+009. It is demonstrated that observable SEDs inside a typical point spread function of imaging atmospheric Cherenkov telescopes (IACTs) for IHCM would exhibit a characteristic high-energy attenuation compared to the ones obtained in hadronic models that do not consider EGMF, which makes it possible to distinguish among these models. At the same time, the spectra for IHCM models would have longer high energy tails than some available spectra for the ALP models and the universal spectra for the Electromagnetic Cascade Model (ECM). The analysis of the IHCM observable angular extensions shows that the sources would likely be identified by most IACTs not as point sources but rather as extended ones. These spectra could later be compared with future observation data of such instruments as Cherenkov Telescope Array (CTA) and LHAASO.


Sign in / Sign up

Export Citation Format

Share Document