scholarly journals Algorithm for Improved Stereoscopic Cloud-Top Height Retrieval Based on Visible and Infrared Bands for Himawari-8 and FY-4A

2021 ◽  
Vol 13 (24) ◽  
pp. 4993
Author(s):  
Jonghyuk Lee ◽  
Dong-Bin Shin

Stereoscopic cloud-top height (CTH) retrieval from two geostationary (GEO) satellites is usually realized through a visible (VIS) band with a high horizontal resolution. A stereoscopic-based CTH retrieval algorithm (prototype dual-GEO CTH algorithm) proposed in our previous study also adopts this approach. Although this approach can retrieve accurate stereoscopic CTHs, the heights of optically thin upper clouds overlying the lower clouds are challenging to retrieve because the parallax difference between two GEOs is determined by the lower clouds owing to the low reflectance from the upper clouds. To address this problem, this paper proposes an improved stereoscopic CTH retrieval algorithm, named the improved dual-GEO CTH algorithm, for Himawari-8 and FengYun (FY)-4A GEOs. The proposed algorithm employs an infrared (IR) band in addition to a VIS band. A seamless image cloning technique is adopted to blend the VIS and IR images, which are then used to retrieve the stereoscopic CTHs. The retrieved CTHs are compared with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) CTHs for three occasions involving upper clouds overlying lower clouds. Results show that the proposed algorithm outperforms the prototype dual-GEO CTH algorithm in the case of upper clouds overlying lower clouds. Notably, although the proposed algorithm is intended for Himawari-8 and FY-4A GEOs, it can be easily extended to any combination of two GEOs.

2020 ◽  
Vol 12 (12) ◽  
pp. 1953 ◽  
Author(s):  
Jonghyuk Lee ◽  
Dong-Bin Shin ◽  
Chu-Yong Chung ◽  
JaeGwan Kim

In this paper, we introduce a cloud top-height (CTH) retrieval algorithm using simultaneous observations from the Himawari-8 and FengYun (FY)-2E geostationary (GEO) satellites (hereafter, dual-GEO CTH algorithm). The dual-GEO CTH algorithm estimates CTH based on the parallax, which is the difference in the apparent position of clouds observed from two GEO satellites simultaneously. The dual-GEO CTH algorithm consists of four major procedures: (1) image remapping, (2) image matching, (3) CTH calculation, and (4) quality control. The retrieved CTHs were compared with other satellite CTHs from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Cloud-Profiling Radar (CPR), on three occasions. Considering the geometric configuration and footprint sizes of the two GEO satellites, the theoretical accuracy of the dual-GEO CTH algorithm is estimated as ±0.93 km. The comparisons show that the retrieval accuracy generally tends to fall within the theoretical accuracy range. As the dual-GEO CTH algorithm is based on parallax, it could be easily applied for the estimation of the height of any elevated feature in various fields.


2018 ◽  
Vol 11 (4) ◽  
pp. 2395-2426 ◽  
Author(s):  
Isabelle De Smedt ◽  
Nicolas Theys ◽  
Huan Yu ◽  
Thomas Danckaert ◽  
Christophe Lerot ◽  
...  

Abstract. On board the Copernicus Sentinel-5 Precursor (S5P) platform, the TROPOspheric Monitoring Instrument (TROPOMI) is a double-channel, nadir-viewing grating spectrometer measuring solar back-scattered earthshine radiances in the ultraviolet, visible, near-infrared, and shortwave infrared with global daily coverage. In the ultraviolet range, its spectral resolution and radiometric performance are equivalent to those of its predecessor OMI, but its horizontal resolution at true nadir is improved by an order of magnitude. This paper introduces the formaldehyde (HCHO) tropospheric vertical column retrieval algorithm implemented in the S5P operational processor and comprehensively describes its various retrieval steps. Furthermore, algorithmic improvements developed in the framework of the EU FP7-project QA4ECV are described for future updates of the processor. Detailed error estimates are discussed in the light of Copernicus user requirements and needs for validation are highlighted. Finally, verification results based on the application of the algorithm to OMI measurements are presented, demonstrating the performances expected for TROPOMI.


2015 ◽  
Vol 8 (12) ◽  
pp. 12663-12707 ◽  
Author(s):  
T. E. Taylor ◽  
C. W. O'Dell ◽  
C. Frankenberg ◽  
P. Partain ◽  
H. Q. Cronk ◽  
...  

Abstract. The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols within the instrument's field of view (FOV). Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 μm O2 A-band, neglecting scattering by clouds and aerosols, which introduce photon path-length (PPL) differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 μm (weak CO2 band) and 2.06 μm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which key off of different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning to allow throughputs of ≃ 30 %, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April–May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.


2010 ◽  
Vol 10 (7) ◽  
pp. 17263-17305 ◽  
Author(s):  
D. L. Wu ◽  
J. H. Chae ◽  
A. Lambert ◽  
F. F. Zhang

Abstract. To study cloud/aerosol features in the upper troposphere and lower stratosphere (UT/LS) with the NASA's A-Train sensors, a research algorithm is developed for a re-gridded CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Level 1 (L1) backscatter dataset. This paper provides a detailed analysis of the measurement noise of this re-gridded dataset in order to compare the lidar measurements with other collocated measurements (e.g., CloudSat, Microwave Limb Sounder). The re-gridded dataset has a manageable data volume for multi-year analysis. It has a fixed (5 km) horizontal resolution, and the measurement error is derived empirically from the background-corrected backscatter profile on a profile-by-profile basis. The 532-nm and 1064-nm measurement noises, determined from the data at altitudes above 19 km, are analyzed and characterized in terms of the mean (μ), standard deviation (σ), and normalized probability density function (PDF). These noises show a larger variance over landmasses and bright surfaces during day, and in regions with enhanced flux of energetic particles during night, where the instrument's ability for feature detection is slightly degraded. An increasing trend in the nighttime 1064-nm σ appears to be significant, which likely causes the increasing differences in cloud occurrence frequency between the 532-nm and 1064-nm channels. Most of the CALIOP backscatter noise distributions exhibit a Gaussian-like behavior but the nighttime 532-nm perpendicular measurements show multi-Gaussian characteristics. We apply σ – based thresholds to detect cloud/aerosol features in the UT/LS from the subset L1 data. The observed morphology is similar to that from the Level 2 (L2) 05km_CLAY+05km_ALAY product, but the occurrence frequency obtained in this study is slightly lower than the L2 product due to differences in spatial averaging and detection threshold. In the case where the measurement noises of two data sets are different, the normalized PDF has proven useful for quantifying the day-night difference of the CALIOP backscatters, showing higher daytime cloud occurrence frequency in the tropical UT/LS. Other cloud/aerosol properties, such as depolarization ratio and color ratio, can be also evaluated with the PDF method.


2020 ◽  
Vol 54 (11-12) ◽  
pp. 5065-5088 ◽  
Author(s):  
Alvaro Avila-Diaz ◽  
Gabriel Abrahão ◽  
Flavio Justino ◽  
Roger Torres ◽  
Aaron Wilson

2019 ◽  
Vol 49 (5) ◽  
pp. 1159-1181 ◽  
Author(s):  
Christopher Danek ◽  
Patrick Scholz ◽  
Gerrit Lohmann

AbstractThe influence of a high horizontal resolution (5–15 km) on the general circulation and hydrography in the North Atlantic is investigated using the Finite Element Sea Ice–Ocean Model (FESOM). We find a stronger shift of the upper-ocean circulation and water mass properties during the model spinup in the high-resolution model version compared to the low-resolution (~1°) control run. In quasi equilibrium, the high-resolution model is able to reduce typical low-resolution model biases. Especially, it exhibits a weaker salinification of the North Atlantic subpolar gyre and a reduced mixed layer depth in the Labrador Sea. However, during the spinup adjustment, we see that initially improved high-resolution features partially reduce over time: the strength of the Atlantic overturning and the path of the North Atlantic Current are not maintained, and hence hydrographic biases known from low-resolution ocean models return in the high-resolution quasi-equilibrium state. We identify long baroclinic Rossby waves as a potential cause for the strong upper-ocean adjustment of the high-resolution model and conclude that a high horizontal resolution improves the state of the modeled ocean but the model integration length should be chosen carefully.


2011 ◽  
Vol 59 (6) ◽  
pp. 1205-1235 ◽  
Author(s):  
Michał Z. Ziemiański ◽  
Marcin J. Kurowski ◽  
Zbigniew P. Piotrowski ◽  
Bogdan Rosa ◽  
Oliver Fuhrer

Ocean Science ◽  
2006 ◽  
Vol 2 (2) ◽  
pp. 173-181 ◽  
Author(s):  
A. Jordi ◽  
G. Basterretxea ◽  
A. Orfila ◽  
J. Tintoré

Abstract. In this paper, we present the results from a high horizontal resolution numerical simulation of the northwestern Mediterranean using a z-level, non-hydrostatic, primitive equation ocean model (DieCAST). The high resolution allows an accurate representation of the submarine canyons that presides in the region. The model is one-way coupled to a large scale model of the Mediterranean Sea through open boundaries and uses the atmospheric forcing fields provided in terms of HIRLAM outputs by the Spanish National Institute of Meteorology. Results show that the model can successfully reproduce the complex general circulation characteristics of the area, including the modifications induced by canyons in their vicinity and other phenomena observed such as instabilities and coastal trapped waves. The sea surface temperature is similar to satellite observations except that simulated temperatures are slightly warmer near the coast than observations and colder near the open boundaries. An important topic of this work is the computation of the shelf-slope exchanges, which are able to renew shelf waters in a few months.


Sign in / Sign up

Export Citation Format

Share Document