scholarly journals Radar and Visual Odometry Integrated System Aided Navigation for UAVS in GNSS Denied Environment

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2776 ◽  
Author(s):  
Mostafa Mostafa ◽  
Shady Zahran ◽  
Adel Moussa ◽  
Naser El-Sheimy ◽  
Abu Sesay

Drones are becoming increasingly significant for vast applications, such as firefighting, and rescue. While flying in challenging environments, reliable Global Navigation Satellite System (GNSS) measurements cannot be guaranteed all the time, and the Inertial Navigation System (INS) navigation solution will deteriorate dramatically. Although different aiding sensors, such as cameras, are proposed to reduce the effect of these drift errors, the positioning accuracy by using these techniques is still affected by some challenges, such as the lack of the observed features, inconsistent matches, illumination, and environmental conditions. This paper presents an integrated navigation system for Unmanned Aerial Vehicles (UAVs) in GNSS denied environments based on a Radar Odometry (RO) and an enhanced Visual Odometry (VO) to handle such challenges since the radar is immune against these issues. The estimated forward velocities of a vehicle from both the RO and the enhanced VO are fused with the Inertial Measurement Unit (IMU), barometer, and magnetometer measurements via an Extended Kalman Filter (EKF) to enhance the navigation accuracy during GNSS signal outages. The RO and VO are integrated into one integrated system to help overcome their limitations, since the RO measurements are affected while flying over non-flat terrain. Therefore, the integration of the VO is important in such scenarios. The experimental results demonstrate the proposed system’s ability to significantly enhance the 3D positioning accuracy during the GNSS signal outage.

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 546
Author(s):  
Jiaxin Gao ◽  
Kui Li ◽  
Jiyang Chen

Autonomous and accurate acquisition of the position and azimuth of the vehicle is critical to the combat effectiveness of land-fighting vehicles. The integrated navigation system, consisting of a strap-down inertial navigation system (SINS) and odometer (OD), is commonly applied in vehicles. In the SINS/OD integrated system, the odometer is installed around the vehicle’s wheel, while SINS is usually installed on the base of the vehicle. The distance along SINS and OD would cause a velocity difference when the vehicle maneuvers, which may lead to a significant influence on the integration positioning accuracy. Furthermore, SINS navigation errors, especially azimuth error, would diverge over time due to gyro drifts and accelerometer biases. The azimuth error would cause the divergence of dead-reckoning positioning errors with the distance that the vehicle drives. To solve these problems, an integrated positioning and orientation method based on the configuration of SINS and couple odometers was proposed in this paper. The proposed method designed a high precision integrated navigation algorithm, which compensated the lever arm effect to eliminate the velocity difference between SINS and odometers. At the same time, by using the measured information of couple odometers, azimuth reference was calculated and used as an external measurement to suppress SINS azimuth error’s divergence over time, thus could further improve the navigation precision of the integrated system, especially the orientation accuracy. The performance of the proposed method was verified by simulations. The results demonstrated that SINS/2ODs integrated system could achieve a positioning accuracy of 0.01% D (total mileage) and orientation accuracy of ±30″ by using SINS with 0.01°/h Fiber-Optic Gyroscope (FOGs) and 50 µg accelerometers.


2021 ◽  
Vol 11 (20) ◽  
pp. 9572
Author(s):  
Yongjian Zhang ◽  
Lin Wang ◽  
Guo Wei ◽  
Chunfeng Gao

Aircraft flying the trans-arctic routes usually apply inertial navigation mechanization in two different navigation frames, e.g., the local geographic frame and the grid frame. However, this change of navigation frame will cause filter overshoot and error discontinuity. To solve this problem, taking the inertial navigation system/global navigation satellite system (INS/GNSS) integrated navigation system as an example, an integrated navigation method based on covariance transformation is proposed. The relationship of the system error state between different navigation frames is deduced as a means to accurately convert the Kalman filter’s covariance matrix. The experiment and semi-physical simulation results show that the presented covariance transformation algorithm can effectively solve the filter overshoot and error discontinuity caused by the change of navigation frame. Compared with non-covariance transformation, the system state error is thereby reduced significantly.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


1993 ◽  
Vol 46 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Eric Aardoom ◽  
André Nieuwland

Recently, integration of different radionavigation systems has become very popular, since it improves system integrity, availability, accuracy and reliability. This paper discusses a new, flexible and cost-effective approach to system integration, centred on a single-chip application specific processor (ASP). An overview of this integrated system is presented and the application of the ASP for the implementation of a six-channel GPS, OMEGA, Loran-C and MLS receiver is given. The ASP is currently being implemented on a 180000 transistor 1·6μ, m CMOS Sea of Gates chip, and is expected to run at 100 MHz clock speed.


Author(s):  

The schemes of navigation systems correction are considered. The operation mode of the aircraft during navigation is analyzed. An adaptive modification of the linear Kalman filter is used to correct the navigation information. An algorithm for predicting a correction signal based on a neural network in the event of a loss of a SNS correction signal is formed. Experimental results show the effectiveness of the algorithm. Keywords aircraft; inertial navigation system; satellite system; Kalman filter; neural networks; genetic algorithm


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 188 ◽  
Author(s):  
Heyone Kim ◽  
Junhak Lee ◽  
Sang Heon Oh ◽  
Hyoungmin So ◽  
Dong-Hwan Hwang

To avoid degradation of navigation performance in the navigation warfare environment, the multi-radio integrated navigation system can be used, in which all available radio navigation systems are integrated to back up Global Navigation Satellite System (GNSS) when the GNSS is not available. Before real-time multi-radio integrated navigation systems are deployed, time and cost can be saved when the modeling and simulation (M&S) software is used in the performance evaluation. When the multi-radio integrated navigation system M&S is comprised of independent function modules, it is easy to modify and/or to replace the function modules. In this paper, the M&S software design method was proposed for multi-radio integrated navigation systems as a GNSS backup under the navigation warfare. The M&S software in the proposed design method consists of a message broker and function modules. All the messages were transferred through the message broker in order to be exchanged between the function modules. The function modules in the M&S software were independently operated due to the message broker. A message broker-based M&S software was designed for a multi-radio integrated navigation system. In order to show the feasibility of the proposed design method, the M&S software was implemented for Global Positioning System (GPS), Korean Navigation Satellite System (KNSS), enhanced Long range navigation (eLoran), Loran-C, and Distance Measuring Equipment/Very high-frequency Omnidirectional Radio range (DME/VOR). The usefulness of the proposed design method was shown by checking the accuracy and availability of the GPS only navigation and the multi-radio integrated navigation system under the attack of jamming to GPS.


2020 ◽  
Vol 12 (5) ◽  
pp. 747
Author(s):  
Peng Zhang ◽  
Yinzhi Zhao ◽  
Huan Lin ◽  
Jingui Zou ◽  
Xinzhe Wang ◽  
...  

The global navigation satellite system (GNSS)-based attitude determination system has attracted more and more attention with the advantages of having simplified algorithms, a low price and errors that do not accumulate over time. However, GNSS signals may have poor quality or lose lock in some epochs with the influence of signal fading and the multipath effect. When the direct attitude determination method is applied, the primary baseline may not be available (ambiguity is not fixed), leading to the inability of attitude determination. With the gradual popularization of low-cost receivers, making full use of spatial redundancy information of multiple antennas brings new ideas to the GNSS-based attitude determination method. In this paper, an attitude angle conversion algorithm, selecting an arbitrary baseline as the primary baseline, is derived. A multi-antenna attitude determination method based on primary baseline switching is proposed, which is performed on a self-designed embedded software and hardware platform. The proposed method can increase the valid epoch proportion and attitude information. In the land vehicle test, reference results output from a high-accuracy integrated navigation system were used to evaluate the accuracy and reliability. The results indicate that the proposed method is correct and feasible. The valid epoch proportion is increased by 16.2%, which can effectively improve the availability of attitude determination. The RMS of the heading, pitch and roll angles are 0.52°, 1.25° and 1.16°.


2013 ◽  
Vol 336-338 ◽  
pp. 277-280 ◽  
Author(s):  
Tian Lai Xu

The combination of Inertial Navigation System (INS) and Global Positioning System (GPS) provides superior performance in comparison with either a stand-alone INS or GPS. However, the positioning accuracy of INS/GPS deteriorates with time in the absence of GPS signals. A least squares support vector machines (LS-SVM) regression algorithm is applied to INS/GPS integrated navigation system to bridge the GPS outages to achieve seamless navigation. In this method, LS-SVM is trained to model the errors of INS when GPS is available. Once the LS-SVM is properly trained in the training phase, its prediction can be used to correct the INS errors during GPS outages. Simulations in INS/GPS integrated navigation showed improvements in positioning accuracy when GPS outages occur.


2014 ◽  
Vol 654 ◽  
pp. 181-186 ◽  
Author(s):  
Wei Lin Yuan ◽  
Yan Ma ◽  
Hua Bo Sun

The integrated positioning system increases the visible number of single satellite navigation system and improve the DOP value of single satellite navigation system. In accordance with the construction plan, BeiDou Navigation Satellite System (BDS) has started providing continuous passive positioning, navigation and timing service in the most parts of the Asia-Pacific In this paper, DOP value of GPS, BDS and the integrated navigation system are analyzed theoretically. The improvement of DOP value of GPS which resulted from present-running BDS navigation satellites is calculated by GPS/BDS observational data. The conclusions that GPS/BDS integrated navigation system will be able to improve the positioning accuracy and have useful references for the navigation and positioning application are also obtained.


Sign in / Sign up

Export Citation Format

Share Document