scholarly journals An Intelligent Computing Method for Contact Plan Design in the Multi-Layer Spatial Node-Based Internet of Things

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2852
Author(s):  
Cui-Qin Dai ◽  
Qingyang Song ◽  
Lei Guo

Computational Intelligence (CI) has been addressed as a great challenge in recent years, particularly the aspects of routing, task scheduling, and other high-complexity issues. Especially for the Contact Plan Design (CPD) that schedules contacts in dynamic and resource-constrained networks, a suitable CI algorithm can be exchanged for a high-quality Contact Plan (CP) with the appropriate computational overhead. Previous works on CPD mainly focused on the optimization of satellite network connectivity, but most of them ignored network topology characteristics. In this paper, we study the CPD issue in the spatial node based Internet of Things (IoT), which enables the spatial nodes to deliver data cooperatively via intelligent networking. Specifically, we first introduce a Multi-Layer Space Communication Network (MLSCN) model consisting of satellites, High Altitude Platforms (HAPs), Unmanned Aerial Vehicles (UAVs), and ground stations, on which a Time-Evolving Graph (TEG) is used to illustrate the CPD process. Then, according to the characteristics of each layer in the MLSCN, we design the corresponding CPs for the inter-layer contacts and intra-layer contacts. After that, a CI algorithm named as Multidirectional Particle Swarm Optimization (MPSO) is proposed for inter-layer CPD, which utilizes a grid-based initialization strategy to expand the diversity of individuals, in which a quaternary search method and quaternary optimization are introduced to improve efficiency of particle swarms in iterations and to ensure the continuous search ability, respectively. Furthermore, an optimized scheme is implemented for the intra-layer CPD to reduce congestion and improve transmission efficiency. Simulation results show that the proposed CPD scheme can realize massive data transmission with high efficiency in the multi-layer spatial node-based IoT.

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
N. A. Fakharulrazi ◽  
◽  
F. Yakub ◽  
M. N. Baba ◽  
L. F. Zhao ◽  
...  

Composting food waste is a delicate procedure that requires specific infrastructure and machinery that can gradually transform the wastes to nutrient-rich manure. Nevertheless, it also desires a constant attention by experts to achieve a quality outcome. Therefore, automatic composting machinery is a promising new idea as modern technology is taking over the world with it high efficiency. The objective of this paper is to build a fully automated composting machine that can help to reduce food waste using a more efficient and environmentally friendly method. This machine has its special features of heating, cooling and grinding which is simple and easy to use for every consumer at just one touch of a button. In addition, it uses a special filter to eliminate unpleasant odor to ensure consumer’s space of mind. The composting process uses node microcontroller (MCU) to run its operation and Internet of Things (IoT) with a developed mobile application to measure the amount of food waste, current process and its moisture content before turning the waste into high nutrient flakes at around 10% of its original volume. It will also notify the consumer when the whole process is done and the final product is ready to use. The produced flakes are good for nurturing soils, use as fertilizer, and renewable source of energy or animal feed. The benefit is to help reduce handling cost of waste at landfill. Excessive logistical energy is required to send food waste to landfill if conventional equipment is applied. This product has a high potential to penetrate the end users who usually cooks at home and also the industrial food manufacturers whether from medium to large which produces a lot of raw waste. Essentially, this machine allows food waste, through implementation of IoT to be converted to usable fertilizer.


Author(s):  
Banu Çalış Uslu ◽  
Ertuğ Okay ◽  
Erkan Dursun

AbstractCurrently, rapidly developing digital technological innovations affect and change the integrated information management processes of all sectors. The high efficiency of these innovations has inevitably pushed the health sector into a digital transformation process to optimize the technologies and methodologies used to optimize healthcare management systems. In this transformation, the Internet of Things (IoT) technology plays an important role, which enables many devices to connect and work together. IoT allows systems to work together using sensors, connection methods, internet protocols, databases, cloud computing, and analytic as infrastructure. In this respect, it is necessary to establish the necessary technical infrastructure and a suitable environment for the development of smart hospitals. This study points out the optimization factors, challenges, available technologies, and opportunities, as well as the system architecture that come about by employing IoT technology in smart hospital environments. In order to do that, the required technical infrastructure is divided into five layers and the system infrastructure, constraints, and methods needed in each layer are specified, which also includes the smart hospital’s dimensions and extent of intelligent computing and real-time big data analytic. As a result of the study, the deficiencies that may arise in each layer for the smart hospital design model and the factors that should be taken into account to eliminate them are explained. It is expected to provide a road map to managers, system developers, and researchers interested in optimization of the design of the smart hospital system.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Fengxia Lu ◽  
Xuechen Cao ◽  
Weiping Liu

AbstractA 16-degree-of-freedom dynamic model for the load contact analysis of a double helical gear considering sliding friction is established. The dynamic equation is solved by the Runge–Kutta method to obtain the vibration displacement. The method combines the friction coefficient model based on the elastohydrodynamic lubrication theory with the dynamic model, which provides a theoretical basis for the calculation of the power loss of the transmission system. Moreover, the sensitivity analysis of the parameters that affect the transmission efficiency is carried out, and an optimization method of meshing efficiency is proposed without reducing the bending strength of the gears. This method can directly guide the design of the double helical gear transmission system.


2004 ◽  
Vol 5 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Satoko Arai ◽  
Christina Minjares ◽  
Seiho Nagafuchi ◽  
Toru Miyazaki

The manipulation of a specific gene in NOD mice, the best animal model for insulin-dependent diabetes mellitus (IDDM), must allow for the precise characterization of the functional involvement of its encoded molecule in the pathogenesis of the disease. Although this has been attempted by the cross-breeding of NOD mice with many gene knockout mice originally created on the 129 or C57BL/6 strain background, the interpretation of the resulting phenotype(s) has often been confusing due to the possibility of a known or unknown disease susceptibility locus (e.g.,Iddlocus) cosegregating with the targeted gene from the diabetes-resistant strain. Therefore, it is important to generate mutant mice on a pure NOD background by using NOD-derived embryonic stem (ES) cells. By using the NOD ES cell line established by Nagafuchi and colleagues in 1999 (FEBSLett., 455, 101–104), the authors reexamined various conditions in the context of cell culture, DNA transfection, and blastocyst injection, and achieved a markedly improved transmission efficiency of these NOD ES cells into the mouse germ line. These modifications will enable gene targeting on a “pure” NOD background with high efficiency, and contribute to clarifying the physiological roles of a variety of genes in the disease course of IDDM.


2018 ◽  
Vol 7 (9) ◽  
pp. 334
Author(s):  
Chi-Hua Chen ◽  
Kuen-Rong Lo

This editorial introduces the special issue entitled “Applications of Internet of Things”, of ISPRS International Journal of Geo-Information. Topics covered in this issue include three main parts: (I) intelligent transportation systems (ITS), (II) location-based services (LBS), and (III) sensing techniques and applications. Three papers on ITS are as follows: (1) “Vehicle positioning and speed estimation based on cellular network signals for urban roads,” by Lai and Kuo; (2) “A method for traffic congestion clustering judgment based on grey relational analysis,” by Zhang et al.; and (3) “Smartphone-based pedestrian’s avoidance behavior recognition towards opportunistic road anomaly detection,” by Ishikawa and Fujinami. Three papers on LBS are as follows: (1) “A high-efficiency method of mobile positioning based on commercial vehicle operation data,” by Chen et al.; (2) “Efficient location privacy-preserving k-anonymity method based on the credible chain,” by Wang et al.; and (3) “Proximity-based asynchronous messaging platform for location-based Internet of things service,” by gon Jo et al. Two papers on sensing techniques and applications are as follows: (1) “Detection of electronic anklet wearers’ groupings throughout telematics monitoring,” by Machado et al.; and (2) “Camera coverage estimation based on multistage grid subdivision,” by Wang et al.


Author(s):  
S. Arokiaraj ◽  
Dr. N. Viswanathan

With the advent of Internet of things(IoT),HA (HA) recognition has contributed the more application in health care in terms of diagnosis and Clinical process. These devices must be aware of human movements to provide better aid in the clinical applications as well as user’s daily activity.Also , In addition to machine and deep learning algorithms, HA recognition systems has significantly improved in terms of high accurate recognition. However, the most of the existing models designed needs improvisation in terms of accuracy and computational overhead. In this research paper, we proposed a BAT optimized Long Short term Memory (BAT-LSTM) for an effective recognition of human activities using real time IoT systems. The data are collected by implanting the Internet of things) devices invasively. Then, proposed BAT-LSTM is deployed to extract the temporal features which are then used for classification to HA. Nearly 10,0000 dataset were collected and used for evaluating the proposed model. For the validation of proposed framework, accuracy, precision, recall, specificity and F1-score parameters are chosen and comparison is done with the other state-of-art deep learning models. The finding shows the proposed model outperforms the other learning models and finds its suitability for the HA recognition.


Author(s):  
Sree Naga Raja Sekhar Mallela

Abstract: The most common buzzwords in the world is “The Internet of things” (IoT) and IOT describes the network of physical objects, so known as, "things" those are rooted with sensors in the devices, application software, technologies that is used for the resolution of connecting one end to another end and exchanging information with other devices and systems over the Internet. The IoT 5G technologies can also be used in journalism and the primary focus is to increase M2M interaction of mass communication devices. One way it is “ubiquitous computing” can occur using any device, in any location, and in any format. The Internet of Things (IoT) is all about small cost sensors grabbing data to communicate with one device to another device using cloud solutions. Coming to the 5th generation mobile network. We have already started using 4G networks and as we know that, start with 1G, 2G, 3G, and 4G networks. The 5th generation network is going to enable an upcoming new network that will associate virtually every person globally connected and everything organized including IoT devices, objects and machines. Central communication and Journalism is the activity of gathering right information, evaluating, generating, and presenting broadcast information. It is high time to start using IOT Technology using 5th generation high-speed network connectivity devices to communicate or data transfer in the area of journalism. Keywords: IOT – Internet Of Things, 5G- Fifth Generation in data network, JMC – Journalism and Mass Communications, M2M – Machine to Machine, Cloud , Artificial intelligence and Machine Learning.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Youwen Zhu ◽  
Yue Zhang ◽  
Jiabin Yuan ◽  
Xianmin Wang

Privacy-preserving string equality test is a fundamental operation of many algorithms, including privacy-preserving authentication in Internet of Things (IoT). Existing secure equality test schemes can theoretically achieve string equality comparison and preserve the private strings. However, they suffer from heavy computation and communication cost, especially while the strings are of hundreds of bits or longer, which is not suitable for IoT applications. In this paper, we propose an approximate  Fast privacy-preserving equality  Test  Protocol (FTP), which can securely complete string equality test and achieve high running efficiency at the cost of little accuracy loss. We strictly analyze the accuracy of our proposed scheme and formally prove its security. Additionally, we leverage extensive simulation experiments to evaluate the running cost, which confirms our high efficiency; for instance, our proposed FTP can securely compare two 256-bit strings within 0.7 seconds on ordinary laptops.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2048 ◽  
Author(s):  
Mohammed Zaki Hasan ◽  
Hussain Al-Rizzo

The integration of the Internet of Things (IoT) with Wireless Sensor Networks (WSNs) typically involves multihop relaying combined with sophisticated signal processing to serve as an information provider for several applications such as smart grids, industrial, and search-and-rescue operations. These applications entail deploying many sensors in environments that are often random which motivated the study of beamforming using random geometric topologies. This paper introduces a new algorithm for the synthesis of several geometries of Collaborative Beamforming (CB) of virtual sensor antenna arrays with maximum mainlobe and minimum sidelobe levels (SLL) as well as null control using Canonical Swarm Optimization (CPSO) algorithm. The optimal beampattern is achieved by optimizing the current excitation weights for uniform and non-uniform interelement spacings based on the network connectivity of the virtual antenna arrays using a node selection scheme. As compared to conventional beamforming, convex optimization, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), the proposed CPSO achieves significant reduction in SLL, control of nulls, and increased gain in mainlobe directed towards the desired base station when the node selection technique is implemented with CB.


2014 ◽  
Vol 513-517 ◽  
pp. 1519-1522 ◽  
Author(s):  
Bin Peng Wang

This paper involves the modern agricultural application control system which is based on internet of things, and this intelligent management system uses intelligent control technology such as S7-300, GSM,WSN and Zigbee to realize the modernization of rural security, agricultural production and residents living fully intelligent managed. This system applies precision agriculture, digital image processing, wireless data transmission and other fields, really combining digital management technology with embedded technology. At the same time, this system which is based on internet of things is the necessary path of modern agriculture informatization strategy. With the mature development of technology of internet of things in modern society, modern agriculture application management system based on internet of things will bring new change to agriculture and high efficiency of agricultural production.


Sign in / Sign up

Export Citation Format

Share Document