scholarly journals On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2856 ◽  
Author(s):  
Soo-In Choi ◽  
Chang-Hee Han ◽  
Ga-Young Choi ◽  
Jaeyoung Shin ◽  
Kwang Soup Song ◽  
...  

Brain-computer interface (BCI) studies based on electroencephalography (EEG) measured around the ears (ear-EEGs) have mostly used exogenous paradigms involving brain activity evoked by external stimuli. The objective of this study is to investigate the feasibility of ear-EEGs for development of an endogenous BCI system that uses self-modulated brain activity. We performed preliminary and main experiments where EEGs were measured on the scalp and behind the ears to check the reliability of ear-EEGs as compared to scalp-EEGs. In the preliminary and main experiments, subjects performed eyes-open and eyes-closed tasks, and they performed mental arithmetic (MA) and light cognitive (LC) tasks, respectively. For data analysis, the brain area was divided into four regions of interest (ROIs) (i.e., frontal, central, occipital, and ear area). The preliminary experiment showed that the degree of alpha activity increase of the ear area with eyes closed is comparable to those of other ROIs (occipital > ear > central > frontal). In the main experiment, similar event-related (de)synchronization (ERD/ERS) patterns were observed between the four ROIs during MA and LC, and all ROIs showed the mean classification accuracies above 70% required for effective binary communication (MA vs. LC) (occipital = ear = central = frontal). From the results, we demonstrated that ear-EEG can be used to develop an endogenous BCI system based on cognitive tasks without external stimuli, which allows the usability of ear-EEGs to be extended.

2020 ◽  
Vol 8 (6) ◽  
pp. 2370-2377

A brain-controlled robot using brain computer interfaces (BCIs) was explored in this project. BCIs are systems that are able to circumvent traditional communication channels (i.e. muscles and thoughts), to ensure the human brain and physical devices communicate directly and are in charge by converting various patterns of brain activity to instructions in real time. An automation can be managed with these commands. The project work seeks to build and monitor a program that can help the disabled people accomplish certain activities independently of others in their daily lives. Develop open-source EEG and brain-computer interface analysis software. The quality and performance of BCI of different EEG signals are compared. Variable signals obtained through MATLAB Processing from the Brainwave sensor. Automation modules operate by means of the BCI system. The Brain Computer Interface aims to build a fast and reliable link between a person's brain and a personal computer. The controls also use the Brain-Computer Interface for home appliances. The system will integrate with any smartphones voice assistant.


2019 ◽  
Vol 292 ◽  
pp. 01033
Author(s):  
Zuzana Koudelkova ◽  
Sarka Dankova ◽  
Michal Filip ◽  
Marcela Dabrovska

Brain-Computer Interface (BCI) is an interface connecting the human neural system and computer. This article explains the fundamental principles of BCI and devices, which can be controlled using electroencephalography (EEG). Firstly, this article describes Brain-Computer interface according to obtaining brain activity. After that, the applications of BCI are proposed, which can be used in clinical practice. In the experimental part, the external systems are defined. These external systems are operated by BCI technology. This technology is developed at the Department of Informatics and Artificial Intelligence of the Faculty of Applied Informatics, Tomas Bata University in Zlin. This BCI system contains EEG technology, which is responsible for scanning a brain activity with a fourteen-channel device developed by Emotiv company. In the near future, this design of peripheral systems can be involved in clinical practice in various medical branches, especially physiotherapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Setare Amiri ◽  
Reza Fazel-Rezai ◽  
Vahid Asadpour

Increasing number of research activities and different types of studies in brain-computer interface (BCI) systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.


2021 ◽  
Vol 15 ◽  
Author(s):  
Songwei Li ◽  
Junyi Duan ◽  
Yu Sun ◽  
Xinjun Sheng ◽  
Xiangyang Zhu ◽  
...  

Motor imagery (MI) is an endogenous mental process and is commonly used as an electroencephalogram (EEG)-based brain–computer interface (BCI) strategy. Previous studies of P300 and MI-based (without online feedback) BCI have shown that mental states like fatigue can negatively affect participants’ EEG signatures. However, exogenous stimuli cause visual fatigue, which might have a different mechanism than endogenous tasks do. Furthermore, subjects could adjust themselves if online feedback is provided. In this sense, it is still unclear how fatigue affects online MI-based BCI performance. With this question, 12 healthy subjects are recruited to investigate this issue, and an MI-based online BCI experiment is performed for four sessions on different days. The first session is for training, and the other three sessions differ in rest condition and duration—no rest, 16-min eyes-open rest, and 16-min eyes-closed rest—arranged in a pseudo-random order. Multidimensional fatigue inventory (MFI) and short stress state questionnaire (SSSQ) reveal that general fatigue, mental fatigue, and distress have increased, while engagement has decreased significantly within certain sessions. However, the BCI performances, including percent valid correct (PVC) and information transfer rate (ITR), show no significant change across 400 trials. The results suggest that although the repetitive MI task has affected subjects’ mental states, their BCI performances and feature separability within a session are not affected by the task significantly. Further electrophysiological analysis reveals that the alpha-band power in the sensorimotor area has an increasing tendency, while event-related desynchronization (ERD) modulation level has a decreasing trend. During the rest time, no physiological difference has been found in the eyes-open rest condition; on the contrary, the alpha-band power increase and subsequent decrease appear in the eyes-closed rest condition. In summary, this experiment shows evidence that mental states can change dramatically in the intensive MI-BCI practice, but BCI performances could be maintained.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jaeyoung Shin ◽  
Klaus-Robert Müller ◽  
Christoph H. Schmitz ◽  
Do-Won Kim ◽  
Han-Jeong Hwang

We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1613
Author(s):  
Man Li ◽  
Feng Li ◽  
Jiahui Pan ◽  
Dengyong Zhang ◽  
Suna Zhao ◽  
...  

In addition to helping develop products that aid the disabled, brain–computer interface (BCI) technology can also become a modality of entertainment for all people. However, most BCI games cannot be widely promoted due to the poor control performance or because they easily cause fatigue. In this paper, we propose a P300 brain–computer-interface game (MindGomoku) to explore a feasible and natural way to play games by using electroencephalogram (EEG) signals in a practical environment. The novelty of this research is reflected in integrating the characteristics of game rules and the BCI system when designing BCI games and paradigms. Moreover, a simplified Bayesian convolutional neural network (SBCNN) algorithm is introduced to achieve high accuracy on limited training samples. To prove the reliability of the proposed algorithm and system control, 10 subjects were selected to participate in two online control experiments. The experimental results showed that all subjects successfully completed the game control with an average accuracy of 90.7% and played the MindGomoku an average of more than 11 min. These findings fully demonstrate the stability and effectiveness of the proposed system. This BCI system not only provides a form of entertainment for users, particularly the disabled, but also provides more possibilities for games.


Author(s):  
Yiwen Wang ◽  
Yuxiao Lin ◽  
Chao Fu ◽  
Zhihua Huang ◽  
Rongjun Yu ◽  
...  

Abstract The desire for retaliation is a common response across a majority of human societies. However, the neural mechanisms underlying aggression and retaliation remain unclear. Previous studies on social intentions are confounded by low-level response related brain activity. Using an EEG-based brain-computer interface (BCI) combined with the Chicken Game, our study examined the neural dynamics of aggression and retaliation after controlling for nonessential response related neural signals. Our results show that aggression is associated with reduced alpha event-related desynchronization (ERD), indicating reduced mental effort. Moreover, retaliation and tit-for-tat strategy use are also linked with smaller alpha-ERD. Our study provides a novel method to minimize motor confounds and demonstrates that choosing aggression and retaliation is less effortful in social conflicts.


2019 ◽  
Author(s):  
Jennifer Stiso ◽  
Marie-Constance Corsi ◽  
Javier Omar Garcia ◽  
Jean M Vettel ◽  
Fabrizio De Vico Fallani ◽  
...  

Motor imagery-based brain-computer interfaces (BCIs) use an individual’s ability to volitionally modulate localized brain activity, often as a therapy for motor dysfunction or to probe causal relations between brain activity and behavior. However, many individuals cannot learn to successfully modulate their brain activity, greatly limiting the efficacy of BCI for therapy and for basic scientific inquiry. Formal experiments designed to probe the nature of BCI learning have offered initial evidence that coherent activity across diverse cognitive systems is a hallmark of individuals who can successfully learn to control the BCI. However, little is known about how these distributed networks interact through time to support learning. Here, we address this gap in knowledge by constructing and applying a multimodal network approach to decipher brain-behavior relations in motor imagery-based brain-computer interface learning using magnetoencephalography. Specifically, we employ a minimally constrained matrix decomposition method -- non-negative matrix factorization -- to simultaneously identify regularized, covarying subgraphs of functional connectivity and behavior, and to detect the time-varying expression of each subgraph. We find that learning is marked by distributed brain-behavior relations: swifter learners displayed many subgraphs whose temporal expression tracked performance. Learners also displayed marked variation in the spatial properties of subgraphs such as the connectivity between the frontal lobe and the rest of the brain, and in the temporal properties of subgraphs such as the stage of learning at which they reached maximum expression. From these observations, we posit a conceptual model in which certain subgraphs support learning by modulating brain activity in networks important for sustaining attention. After formalizing the model in the framework of network control theory, we test the model and find that good learners display a single subgraph whose temporal expression tracked performance and whose architecture supports easy modulation of brain regions important for attention. The nature of our contribution to the neuroscience of BCI learning is therefore both computational and theoretical; we first use a minimally-constrained, individual specific method of identifying mesoscale structure in dynamic brain activity to show how global connectivity and interactions between distributed networks supports BCI learning, and then we use a formal network model of control to lend theoretical support to the hypothesis that these identified subgraphs are well suited to modulate attention.


2021 ◽  
Vol 15 ◽  
Author(s):  
Stuti Chakraborty ◽  
Gianluca Saetta ◽  
Colin Simon ◽  
Bigna Lenggenhager ◽  
Kathy Ruddy

Patients suffering from body integrity dysphoria (BID) desire to become disabled, arising from a mismatch between the desired body and the physical body. We focus here on the most common variant, characterized by the desire for amputation of a healthy limb. In most reported cases, amputation of the rejected limb entirely alleviates the distress of the condition and engenders substantial improvement in quality of life. Since BID can lead to life-long suffering, it is essential to identify an effective form of treatment that causes the least amount of alteration to the person’s anatomical structure and functionality. Treatment methods involving medications, psychotherapy, and vestibular stimulation have proven largely ineffective. In this hypothesis article, we briefly discuss the characteristics, etiology, and current treatment options available for BID before highlighting the need for new, theory driven approaches. Drawing on recent findings relating to functional and structural brain correlates of BID, we introduce the idea of brain–computer interface (BCI)/neurofeedback approaches to target altered patterns of brain activity, promote re-ownership of the limb, and/or attenuate stress and negativity associated with the altered body representation.


Sign in / Sign up

Export Citation Format

Share Document