scholarly journals Multitemporal SAR Image Despeckling Based on a Scattering Covariance Matrix of Image Patch

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3057
Author(s):  
Xiaoshuang Ma ◽  
Penghai Wu

This paper presents a despeckling method for multitemporal images acquired by synthetic aperture radar (SAR) sensors. The proposed method uses a scattering covariance matrix of each image patch as the basic processing unit, which can exploit both the amplitude information of each pixel and the phase difference between any two pixels in a patch. The proposed filtering framework consists of four main steps: (1) a prefiltering result of each image is obtained by a nonlocal weighted average using only the information of the corresponding time phase; (2) an adaptively temporal linear filter is employed to further suppress the speckle; (3) the final output of each patch is obtained by a guided filter using both the original speckled data and the filtering result of step 3; and (4) an aggregation step is used to tackle the multiple estimations problem for each pixel. The despeckling experiments conducted on both simulated and real multitemporal SAR datasets reveal the pleasing performance of the proposed method in both suppressing speckle and retaining details, when compared with both advanced single-temporal and multitemporal SAR despeckling techniques.

2020 ◽  
Vol 8 (1) ◽  
pp. 84-90
Author(s):  
R. Lalchhanhima ◽  
◽  
Debdatta Kandar ◽  
R. Chawngsangpuii ◽  
Vanlalmuansangi Khenglawt ◽  
...  

Fuzzy C-Means is an unsupervised clustering algorithm for the automatic clustering of data. Synthetic Aperture Radar Image Segmentation has been a challenging task because of the presence of speckle noise. Therefore the segmentation process can not directly rely on the intensity information alone but must consider several derived features in order to get satisfactory segmentation results. In this paper, it is attempted to use the fuzzy nature of classification for the purpose of unsupervised region segmentation in which FCM is employed. Different features are obtained by filtering of the image by using different spatial filters and are selected for segmentation criteria. The segmentation performance is determined by the accuracy compared with a different state of the art techniques proposed recently.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


2021 ◽  
Vol 13 (10) ◽  
pp. 1909
Author(s):  
Jiahuan Jiang ◽  
Xiongjun Fu ◽  
Rui Qin ◽  
Xiaoyan Wang ◽  
Zhifeng Ma

Synthetic Aperture Radar (SAR) has become one of the important technical means of marine monitoring in the field of remote sensing due to its all-day, all-weather advantage. National territorial waters to achieve ship monitoring is conducive to national maritime law enforcement, implementation of maritime traffic control, and maintenance of national maritime security, so ship detection has been a hot spot and focus of research. After the development from traditional detection methods to deep learning combined methods, most of the research always based on the evolving Graphics Processing Unit (GPU) computing power to propose more complex and computationally intensive strategies, while in the process of transplanting optical image detection ignored the low signal-to-noise ratio, low resolution, single-channel and other characteristics brought by the SAR image imaging principle. Constantly pursuing detection accuracy while ignoring the detection speed and the ultimate application of the algorithm, almost all algorithms rely on powerful clustered desktop GPUs, which cannot be implemented on the frontline of marine monitoring to cope with the changing realities. To address these issues, this paper proposes a multi-channel fusion SAR image processing method that makes full use of image information and the network’s ability to extract features; it is also based on the latest You Only Look Once version 4 (YOLO-V4) deep learning framework for modeling architecture and training models. The YOLO-V4-light network was tailored for real-time and implementation, significantly reducing the model size, detection time, number of computational parameters, and memory consumption, and refining the network for three-channel images to compensate for the loss of accuracy due to light-weighting. The test experiments were completed entirely on a portable computer and achieved an Average Precision (AP) of 90.37% on the SAR Ship Detection Dataset (SSDD), simplifying the model while ensuring a lead over most existing methods. The YOLO-V4-lightship detection algorithm proposed in this paper has great practical application in maritime safety monitoring and emergency rescue.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2265 ◽  
Author(s):  
Qingqing Feng ◽  
Huaping Xu ◽  
Zhefeng Wu ◽  
Wei Liu

Deceptive jamming against synthetic aperture radar (SAR) can create false targets or deceptive scenes in the image effectively. Based on the difference in interferometric phase between the target and deceptive jamming signals, a novel method for detecting deceptive jamming using cross-track interferometry is proposed, where the echoes with deceptive jamming are received by two SAR antennas simultaneously and the false targets are identified through SAR interferometry. Since the derived false phase is close to a constant in interferogram, it is extracted through phase filtering and frequency detection. Finally, the false targets in the SAR image are obtained according to the detected false part in the interferogram. The effectiveness of the proposed method is validated by simulation results based on the TanDEM-X system.


Author(s):  
X. Shi ◽  
L. Lu ◽  
S. Yang ◽  
G. Huang ◽  
Z. Zhao

For wide application of change detection with SAR imagery, current processing technologies and methods are mostly based on pixels. It is difficult for pixel-based technologies to utilize spatial characteristics of images and topological relations of objects. Object-oriented technology takes objects as processing unit, which takes advantage of the shape and texture information of image. It can greatly improve the efficiency and reliability of change detection. Recently, with the development of polarimetric synthetic aperture radar (PolSAR), more backscattering features on different polarization state can be available for usage of object-oriented change detection study. In this paper, the object-oriented strategy will be employed. Considering the fact that the different target or target's state behaves different backscattering characteristics dependent on polarization state, an object-oriented change detection method that based on weighted polarimetric scattering difference of PolSAR images is proposed. The method operates on the objects generated by generalized statistical region merging (GSRM) segmentation processing. The merit of GSRM method is that image segmentation is executed on polarimetric coherence matrix, which takes full advantages of polarimetric backscattering features. And then, the measurement of polarimetric scattering difference is constructed by combining the correlation of covariance matrix and the difference of scattering power. Through analysing the effects of the covariance matrix correlation and the scattering echo power difference on the polarimetric scattering difference, the weighted method is used to balance the influences caused by the two parts, so that more reasonable weights can be chosen to decrease the false alarm rate. The effectiveness of the algorithm that proposed in this letter is tested by detection of the growth of crops with two different temporal radarsat-2 fully PolSAR data. First, objects are produced by GSRM algorithm based on the coherent matrix in the pre-processing. Then, the corresponding patches are extracted in two temporal images to measure the differences of objects. To detect changes of patches, a difference map is created by means of weighted polarization scattering difference. Finally, the result of change detection can be obtained by threshold determining. The experiments show that this approach is feasible and effective, and a reasonable choice of weights can improve the detection accuracy significantly.


2020 ◽  
Vol 49 (3) ◽  
pp. 299-307
Author(s):  
Zengguo Sun ◽  
Rui Shi ◽  
Wei Wei

When Synthetic-Aperture (SAR) image is transformed into wavelet domain and other transform domains, most of the coefficients of the image are small or zero. This shows that SAR image is sparse. However, speckle can be seen in SAR images. The non-local means is a despeckling algorithm, but it cannot overcome the speckle in homogeneous regions and it blurs edge details of the image. In order to solve these problems, an improved non-local means is suggested. At the same time, in order to better suppress the speckle effectively in edge regions, the non-subsampled Shearlet transform (NSST) is applied. By combining NSST with the improved non-local means, a new type of despeckling algorithm is proposed. Results show that the proposed algorithm leads to a satisfying performance for SAR images.


2019 ◽  
Vol 11 (14) ◽  
pp. 1637 ◽  
Author(s):  
Filippo Biondi ◽  
Pia Addabbo ◽  
Danilo Orlando ◽  
Carmine Clemente

In this paper, we propose a novel strategy to estimate the micro-motion (m-m) of ships from synthetic aperture radar (SAR) images. To this end, observe that the problem of motion and m-m detection of targets is usually solved using synthetic aperture radar (SAR) along-track interferometry through two radars spatially separated by a baseline along the azimuth direction. The approach proposed in this paper for m-m estimation of ships, occupying thousands of pixels, processes the information generated during the coregistration of several re-synthesized time-domain and not overlapped Doppler sub-apertures. Specifically, the SAR products are generated by splitting the raw data according to a temporally small baseline using one single wide-band staring spotlight (ST) SAR image. The predominant vibrational modes of different ships are then estimated. The performance analysis is conducted on one ST SAR image recorded by COSMO-SkyMed satellite system. Finally, the newly proposed approach paves the way for application to the surveillance of land-based industry activities.


Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Shuli Sun ◽  
Minglei Zhang ◽  
Zhihong Gou

Smoothing is one of the basic procedures for improvement of mesh quality. In this paper, a novel and efficient smoothing approach for planar and surface mesh based on element geometric deformation is developed. The presented approach involves two main stages. The first stage is geometric deformation of all the individual elements through a specially designed two-step stretching-shrinking operation (SSO), which is performed by moving the vertices of each element according to a certain rule in order to get better shape of the element. The second stage is to determine the position of each node of the mesh by a weighted average strategy according to quality changes of its adjacent elements. The suggested SSO-based smoothing algorithm works efficiently for triangular mesh and can be naturally expanded to quadrilateral mesh, arbitrary polygonal mesh, and mixed mesh. Combined with quadratic error metric (QEM), this approach may be also applied to improve the quality of surface mesh. The proposed method is simple to program and inherently very suitable for parallelization, especially on graphic processing unit (GPU). Results of numerical experiments demonstrate the effectiveness and potential of this method.


Sign in / Sign up

Export Citation Format

Share Document