scholarly journals The Fabrication and Characterization of InAlAs/InGaAs APDs Based on a Mesa-Structure with Polyimide Passivation

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3399 ◽  
Author(s):  
Jheng-Jie Liu ◽  
Wen-Jeng Ho ◽  
June-Yan Chen ◽  
Jian-Nan Lin ◽  
Chi-Jen Teng ◽  
...  

This paper presents a novel front-illuminated InAlAs/InGaAs separate absorption, grading, field-control and multiplication (SAGFM) avalanche photodiodes (APDs) with a mesa-structure for high speed response. The electric fields in the InAlAs-multiplication layer and InGaAs-absorption layer enable high multiplication gain and high-speed response thanks to the thickness and concentration of the field-control and multiplication layers. A mesa active region of 45 micrometers was defined using a bromine-based isotropic wet etching solution. The side walls of the mesa were subjected to sulfur treatment before being coated with a thick polyimide layer to reduce current leakage, while lowering capacitance and increasing response speeds. The breakdown voltage (VBR) of the proposed SAGFM APDs was approximately 32 V. Under reverse bias of 0.9 VBR at room temperature, the proposed device achieved dark current of 31.4 nA, capacitance of 0.19 pF and multiplication gain of 9.8. The 3-dB frequency response was 8.97 GHz and the gain-bandwidth product was 88 GHz. A rise time of 42.0 ps was derived from eye-diagrams at 0.9 VBR. There was notable absence of intersymbol-interference and the signals remained error-free at data-rates of up to 12.5 Gbps.

2022 ◽  
Vol 43 (1) ◽  
pp. 012302
Author(s):  
K. S. Zhuravlev ◽  
A. L. Chizh ◽  
K. B. Mikitchuk ◽  
A. M. Gilinsky ◽  
I. B. Chistokhin ◽  
...  

Abstract The design, manufacturing and DC and microwave characterization of high-power Schottky barrier InAlAs/InGaAs back-illuminated mesa structure photodiodes are presented. The photodiodes with 10 and 15 μm mesa diameters operate at ≥40 and 28 GHz, respectively, have the output RF power as high as 58 mW at a frequency of 20 GHz, the DC responsivity of up to 1.08 A/W depending on the absorbing layer thickness, and a photodiode dark current as low as 0.04 nA. We show that these photodiodes provide an advantage in the amplitude-to-phase conversion factor which makes them suitable for use in high-speed analog transmission lines with stringent requirements for phase noise.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000379-000385 ◽  
Author(s):  
Brett Sawyer ◽  
Yuya Suzuki ◽  
Zihan Wu ◽  
Hao Lu ◽  
Venky Sundaram ◽  
...  

This paper describes the design, fabrication, and characterization of a two-metal layer RDL structure at 40 um pitch on thin glass interposers. Such an RDL structure is targeted at 2.5D glass interposer packages to achieve up to 1 TB/s die-to-die bandwidth and off-interposer data rates greater than 400 Gb/s, driven by consumer demand of online services for mobile devices. Advanced packaging architectures including 2.5D and 3D interposers require fine line lithography beyond the capabilities of current organic package substrates. Although silicon interposers fabricated using back-end-of-line processes can achieve these RDL wiring densities, they suffer from high electrical loss and high cost. Organic interposers with high wiring densities have also been demonstrated recently using a single sided thin film process. This paper goes beyond silicon and organic interposers in demonstrating fine pitch RDL on glass interposers fabricated by low cost, double sided, and panel-scalable processes. The high modulus and smooth surface of glass helps to achieve lithographic pitch close to that of silicon. Furthermore, the low loss tangent of glass helps in reducing dielectric losses, thus improving high-speed signal propagation. A semi-additive process flow and projection excimer laser ablation was used to fabricate two-metal layer RDL structures and bare glass RDL layers. A minimum of 3 um lithography and 20 um mico-via pitch was achieved. High-frequency characterization of these RDL structures demonstrated single-ended insertion losses of −0.097 dB/mm at f = 1 GHz and differential insertion losses of −0.05 dB/mm at f = 14 GHz.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2800 ◽  
Author(s):  
Jheng-Jie Liu ◽  
Wen-Jeng Ho ◽  
Cho-Chun Chiang ◽  
Chi-Jen Teng ◽  
Chia-Chun Yu ◽  
...  

This paper presents a high-speed top-illuminated InP-based avalanche photodetector (APD) fabricated on conductive InP-wafer using planar processes. The proposed device was then evaluated in terms of DC and dynamic performance characteristics. The design is based on a separate absorption, grading, charge, and multiplication (SAGCM) epitaxial-structure. An electric field-profile of the SAGCM layers was derived from the epitaxial structure. The punch-through voltage of the SAGCM APD was controlled to within 16–17 V, whereas the breakdown voltage (VBR) was controlled to within 28–29 V. We obtained dark current of 2.99 nA, capacitance of 0.226 pF, and multiplication gain of 12, when the APD was biased at 0.9 VBR at room temperature. The frequency-response was characterized by comparing the calculated 3-dB cut-off modulation-frequency (f3-dB) and f3-dB values measured under various multiplication gains and modulated incident powers. The time-response of the APD was evaluated by deriving eye-diagrams at 0.9 VBR using pseudorandom non-return to zero codes with a length of 231-1 at 10–12.5 Gbps. There was a notable absence of intersymbol-interference, and the signals remained error-free at data-rates of up to 12.5 Gbps. The correlation between the rise-time and modulated-bandwidth demonstrate the suitability of the proposed SAGCM-APD chip for applications involving an optical-receiver at data-rates of >10 Gbps.


2016 ◽  
Vol 13 (3) ◽  
pp. 128-135
Author(s):  
Brett Sawyer ◽  
Yuya Suzuki ◽  
Zihan Wu ◽  
Hao Lu ◽  
Venky Sundaram ◽  
...  

This article analyzes redistribution layer (RDL) technologies needed for 2.5-dimensional (2.5-D) die integration on thin glass interposers and developed using low-cost processes. The design, fabrication, and characterization of a four-metal layer RDL buildup required for wide input/output (I/O) routing at 40-μm bump pitch and a two-metal layer RDL buildup fabricated directly on glass for high-speed, off-package signaling are described. Such RDL technologies are targeted at 2.5-D glass interposer packages to achieve up to 1 Tb/s die-to-die bandwidth and off-interposer data rates > 400 Gb/s, driven by consumer demand of online services for mobile devices. Advanced packaging architectures including 2.5-D and 3-D interposers require fine-line lithography beyond the capabilities of current organic package substrates. High electrical loss and high cost are characteristic of silicon interposers fabricated using back-end-of-line (BEOL) processes that can achieve RDL wiring densities required for 2.5-D die integration. Organic interposers with high wiring densities have also been demonstrated using a single-sided, thin-film process. This article goes beyond silicon and organic interposers in demonstrating fine-pitch RDL on glass interposers fabricated by low-cost, double-side, and panel-scalable processes. The high modulus and smooth surface of glass help to achieve lithographic pitch close to that of silicon. Furthermore, the low permittivity and low loss tangent of glass reduce dielectric losses, thus improving high-speed signal propagation. A semiadditive process flow and projection excimer laser ablation were used to fabricate four-metal layer (2 + 0 + 2) fine-pitch RDL and two-metal layer RDL directly on glass. A minimum of 3 μm lithography and 20 μm microvia pitch was achieved. High-frequency characterization of these RDL structures demonstrated single-ended insertion losses of −0.097 dB/mm at f = 1 GHz and differential insertion losses of −0.05 dB/mm at f = 14 GHz.


2015 ◽  
Vol 24 (10) ◽  
pp. 108506
Author(s):  
Qing-Tao Chen ◽  
Yong-Qing Huang ◽  
Jia-Rui Fei ◽  
Xiao-Feng Duan ◽  
Kai Liu ◽  
...  

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
P. G. Kuppusamy ◽  
Ahmed Nabih Zaki Rashed ◽  
P. Jayarajan ◽  
M. R. Thiyagupriyadharsan ◽  
...  

AbstractHigh-speed single-mode fiber-optic communication systems have been presented based on various hybrid multiplexing schemes. Refractive index step and silica-doped germanium percentage parameters are also preserved during their technological boundaries of attention. It is noticed that the connect design parameters suffer more nonlinearity with the number of connects. Two different propagation techniques have been used to investigate the transmitted data rates as a criterion to enhance system performance. The first technique is soliton propagation, where the control parameters lead to equilibrium between the pulse spreading due to dispersion and the pulse shrinking because of nonlinearity. The second technique is the MTDM technique where the parameters are adjusted to lead to minimum dispersion. Two cases are investigated: no dispersion cancellation and dispersion cancellation. The investigations are conducted over an enormous range of the set of control parameters. Thermal effects are considered through three basic quantities, namely the transmission data rates, the dispersion characteristics, and the spectral losses.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud M. A. Eid ◽  
Ahmed Nabih Zaki Rashed ◽  
Iraj S. Amiri

AbstractThis work outlined the fast speed response and high modulation bandwidth through LiNbO3 electro-optic modulators. The refractive index is analyzed to estimate the switching voltage and modulation bandwidth for these modulators. The modulation voltage and data transmission data rates are analyzed and discussed clearly through LiNbO3 electro-optic modulators. The modulator’s performance efficiency is upgraded with the optimum modulator length of 10 mm and its thickness of 2 mm. The proposed modulators are compared with GaAs electrooptic modulators under various electro-optic modulators dimensions at 1300 nm near-infrared region and room temperature.


Sign in / Sign up

Export Citation Format

Share Document