scholarly journals Development of a High Stability Pd-Ni Alloy Thin-Film Coated SAW Device for Sensing Hydrogen

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3560 ◽  
Author(s):  
Wen Wang ◽  
Xueli Liu ◽  
Shengchao Mei ◽  
Mengwei Liu ◽  
Chao Lu ◽  
...  

A Pd-Ni alloy thin-film coated surface acoustic wave (SAW) device is proposed for sensing hydrogen. The Pd-Ni thin-film was sputtered onto the SAW propagation path of a SAW device with a delay line pattern to build the chip-sized hydrogen sensor. The prepared sensor chip was characterized by employing a differential oscillation loop. The effect of the Pd-Ni film thickness on sensing performance was also evaluated, and optimal parameters were determined, allowing for fast response and high sensitivity. Excellent working stability (detection error of 3.7% in half a year), high sensitivity (21.3 kHz/%), and fast response (less than 10 s) were achieved from the 40 nm Pd-Ni alloy thin-film coated sensing device.

Vacuum ◽  
2008 ◽  
Vol 83 (3) ◽  
pp. 699-702 ◽  
Author(s):  
Kazuki Yoshimura ◽  
Shanhu Bao ◽  
Naoki Uchiyama ◽  
Hiroyuki Matsumoto ◽  
Tomomi Kanai ◽  
...  

2006 ◽  
Vol 320 ◽  
pp. 99-102 ◽  
Author(s):  
Kazuki Tajima ◽  
Woosuck Shin ◽  
Maiko Nishibori ◽  
Norimitsu Murayama ◽  
Toshio Itoh ◽  
...  

Micro-thermoelectric hydrogen sensor (micro-THS) with the combination of the thermoelectric effect of Si0.8Ge0.2 thin film and the Pt-catalyzed exothermic reaction of hydrogen oxidation was prepared by microfabrication process. In the viewpoint of high sensitivity of micro-THS, the thermoelectric properties of the Si0.8Ge0.2 thin film could be improved by optimizing carrier concentration using helicon sputtering with an advantage of easy doping control, and sensitivity of the device with this thin film was investigated. As the result, the boron-doped Si0.8Ge0.2 thin film is considered to be the better choice ensuring the reliable monitoring of hydrogen concentration down to ppm level.


2016 ◽  
Vol 176 ◽  
pp. 232-236 ◽  
Author(s):  
Kamrul Hassan ◽  
A.S.M. Iftekhar Uddin ◽  
Farman Ullah ◽  
Yong Soo Kim ◽  
Gwiy-Sang Chung

2004 ◽  
Vol 55 (7) ◽  
pp. 495-499
Author(s):  
Makiko FUKUI ◽  
Koichi KOBAYAKAWA ◽  
Makoto SAITOU ◽  
Yuichi SATO
Keyword(s):  

2013 ◽  
Vol 690-693 ◽  
pp. 1680-1684
Author(s):  
Feng Yun Sun ◽  
Ming Hu ◽  
Peng Sun

WO3 nano-films were deposited on Al2O3 substrate by dc reactive magnetron sputtering method. The effects of preparing conditions, such as the discharge gas ratio (Ar:O2), working pressure, sputtering time and annealing temperature on microstructure, crystalline state and NO2-sensing properties of WO3 nano-films were investigated by orthogonal trial experiment method. The optimum technological conditions were determined by orthogonal test and extreme difference analysis. The crystallization, morphology and composition of WO3 thin film obtained at the optimal parameters were studied by XRD, SEM and XPS. The gas sensing mechanism was also studied. WO3 nano-film shows high sensitivity, fast response, good selectivity at the best operating temperature 200°C.


2014 ◽  
Vol 161 (10) ◽  
pp. D552-D557 ◽  
Author(s):  
Chih-Min Chang ◽  
Mu-Tao Hsieh ◽  
Wei-Chieh Kang ◽  
Thou-Jen Whang

2000 ◽  
Vol 15 (1) ◽  
pp. 14-16
Author(s):  
Sang Sub Kim ◽  
Yong Bum Park

A 3-μm-thick Fe–Ni alloy thin film was deposited on a 0.2-mm-thick low-carbon steel substrate by radio-frequency magnetron sputtering, and the properties of the film were investigated. The film exhibits a columnar growth structure and a fiber texture with the relationship of (110)film//(111)substrate. A thermal cycle test showed good adhesion between the film and the substrate. Most importantly, the Fe–Ni alloy deposition results in a significant reduction in thermal expansion of the whole specimen. These results suggest that a properly deposited Fe–Ni alloy film could be applied to a low-carbon steel sheet to significantly reduce its thermal expansion. Such reduced thermal expansion would enhance the image resolution of a shadow mask made of a low-carbon steel sheet.


2021 ◽  
Vol 11 (24) ◽  
pp. 11726
Author(s):  
Yuan Sun ◽  
Yana Jia ◽  
Yufeng Zhang ◽  
Lina Cheng ◽  
Yong Liang ◽  
...  

A surface acoustic wave (SAW) device is proposed for sensing current by employing the patterned FeGa thin film as the sensitive interface. The layered media structure of FeGa/SiO2/LiNbO3 was established to reveal the working principle of the sensors, and an SAW chip patterned by delay-line and operating at 150 MHz was fabricated photolithographically on 128° YX LiNbO3 substrate. The FeGa thin film with a larger magnetostrictive coefficient was sputtered onto the acoustic propagation path of the SAW chip to build the sensing device. The prepared device was connected into the differential oscillation loop to construct the current sensor. The FeGa thin film produces magnetostrictive strain and so-called ΔE effect at the magnetic field generated by the applied current, which modulates the SAW propagation velocity accordingly. The differential frequency signal was collected to characterize the measurand. Larger sensitivity of 37.9 kHz/A, low hysteresis error of 0.81%, excellent repeatability and stability were achieved in the experiments from the developed sensing device.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3247 ◽  
Author(s):  
Wen Wang ◽  
Shuyao Fan ◽  
Yong Liang ◽  
Shitang He ◽  
Yong Pan ◽  
...  

A Love wave-based sensing chip incorporating a supramolecular cryptophane A (CrypA) thin film was proposed for methane gas sensing in this work. The waveguide effect in the structure of SiO2/36° YX LiTaO3 will confine the acoustic wave energy in SiO2 thin-film, which contributes well to improvement of the mass loading sensitivity. The CrypA synthesized from vanillyl alcohol by a double trimerisation method was dropped onto the wave propagation path of the sensing device, and the adsorption to methane gas molecules by supramolecular interactions in CrypA modulates the acoustic wave propagation, and the corresponding frequency shifts were connected as the sensing signal. A theoretical analysis was performed to extract the coupling of modes for sensing devices simulation. Also, the temperature self-compensation of the Love wave devices was also achieved by using reverse polarity of the temperature coefficient in each media in the waveguide structure. The developed CrypA coated Love wave sensing device was connected into the differential oscillation loop, and the corresponding gas sensitive characterization was investigated. High sensitivity, fast response, and excellent temperature stability were successfully achieved.


Sign in / Sign up

Export Citation Format

Share Document