scholarly journals Prediction of pH Value by Multi-Classification in the Weizhou Island Area

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3875
Author(s):  
Haocai Huang ◽  
Rendong Feng ◽  
Jiang Zhu ◽  
Peiliang Li

Ocean acidification is changing the chemical environment on which marine life depends. It causes a decrease in seawater pH and changes the water quality parameters of seawater. Changes in water quality parameters may affect pH, a key indicator for assessing ocean acidification. Therefore, it is particularly important to study the correlation between pH and various water quality parameters. In this paper, several water quality parameters with potential correlation with pH are investigated, and multiple linear regression, softmax regression, and support vector machine are used to perform multi-classification. Most importantly, experimental data were collected from Weizhou Island, China. The classification results show that the pH has a strong correlation with salinity, temperature, and dissolved oxygen. The prediction accuracy of the classification is good, and the correlation with dissolved oxygen is the most significant. The prediction accuracies of the three methods for multi-classifiers based on the above three factors reach 87.01%, 87.77%, and 89.04%, respectively.

Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 25
Author(s):  
NimishaWagle ◽  
Tri Dev Acharya ◽  
Dong Ha Lee

In general, water quality mapping is done by interpolation of in situ measurement samples. Often, these parameters change with time. Due to geographic variability and the lack of budget in Nepal, such measurements are done less often. Remote sensors that collect spectral information continually can be very useful in the regular monitoring of water quality parameters. Landsat Operational Land Imager (OLI) bands have been used to estimate water quality parameters. In this work, we model two water quality parameters: chlorophyll-a (Chl-a) and dissolved oxygen (DO) using sequential minimal optimization regression (SMOreg), which implements a support vector machine (SVM) algorithm and recursive partitioning tree (REPTree) regressions. A total of 19 measurements were taken from Phewa Lake, Nepal and various secondary bands were derived from using Landsat 8 Operational Land Imager (OLI) bands. These bands underwent feature selection, and regression models were created based on selected bands and sample data. The results showed satisfactory modelling of water quality parameters using Landsat 8 OLI bands in Phewa Lake. Due to a limited number of data, cross-validation was done with 10 folds. The SVM showed a better result than the REPTree regression. For future studies, the performance can be further evaluated in large lakes with larger sample numbers and other water quality parameters.


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 182 ◽  
Author(s):  
Fang He ◽  
Jianguo Wang

No unified electromagnetic anti-fouling mechanism is currently available. Most research has focused on the effects of structural parameters and water quality parameters on electromagnetic fields; variations in water quality parameters under the influence of electromagnetic fields have not been reported. A variable-frequency vertical electromagnetic field is proposed in this study. Relationships between conductivity, pH value, dissolved oxygen, turbidity, fouling resistance, and magnetic acting time were carefully analyzed using statistical analysis. Results show that the conductivity difference was the most explanatory predictive variable on magnetic acting time in the multiple stepwise regression model. Magnetic acting time has a greater impact on conductivity than pH value and dissolved oxygen. Conductivity is used as an adaptive feedback control parameter for the optimum anti-fouling state. Fouling resistance on the heat-exchanging surface of the magnetic experiment was smaller than that of the contrast experiment. The anti-fouling efficiency in 1 kHz and 5 kHz magnetic and contrast experiments was 91.23% and 46.97%, respectively. Better anti-fouling performance was realized under the influence of low-frequency electromagnetic fields, confirming that physical water treatment is an effective and environmentally friendly method to eliminate heat exchanger fouling. This research serves as a reference for the development of an electromagnetic-adaptive closed-loop water treatment device.


2013 ◽  
Vol 316-317 ◽  
pp. 711-714
Author(s):  
Zhi Yong Dong ◽  
Yong Gu ◽  
Shuo Shuo Wang ◽  
Ying Biao Shi ◽  
Ruo Hua Li ◽  
...  

This paper presents monitoring investigation of water quality parameters in Fuchunjiang and Hangzhou reaches of Qiantang estuarine zone by YSI 6600 V2-4-M multi-parameter water quality sonde. The 7 monitoring cross-sections were streamwise placed, and the 2 vertical lines respectively located in flood plain and main channel at each cross-section. Surface, intermediate and bed layers were chosen at each vertical line in main channel, and surface and bed layers at each vertical line in flood plain. At each vertical line, the main water quality parameters such as dissolved oxygen, salinity, turbidity, pH value, electrical conductivity and oxidation reduction potential were monitored, variation of these parameters along longitudinal and vertical directions analyzed, and water quality conditions at each monitoring cross-section assessed.


Author(s):  
Vasudha Lingampally ◽  
V.R. Solanki ◽  
D. L. Anuradha ◽  
Sabita Raja

In the present study an attempt has been made to evaluate water quality and related density of Cladocerans for a period of one year, October 2015 to September 2016. Water quality parameters such as temperature, PH, total dissolved solids, dissolved oxygen, biological oxygen demand, total alkalinity, total hardness, chlorides, phosphates, and nitrates are presented here to relate with the abundance of Cladocerans. The Cladoceran abundance reflects the eutrophic nature of the Chakki talab.


2013 ◽  
Vol 1 (3) ◽  
Author(s):  
Agustina Frasawi ◽  
Robert J Rompas ◽  
Juliaan Ch. Watung

The objective of this research was to measure and analyze the water quality parameters including temperature, brightness, pH, dissolved oxygen, total alkalinity, carbon dioxide and BOD in reservoir Embung Klamalu Sorong regency, and to know the factors that affected the water quality of Embung Klamalu. Measurement of water quality parameters was done in situ for temperature, brightness, pH and in laboratory for dissolved oxygen, total alkalinity, carbon dioxide, and BOD. The results showed the temperature at the five observation stations ranged from 26.2 to 29.8 0C, brightness 38 to 46 cm, pH 7.20 to 8.48 mg /L, dissolved oxygen from 7.20 to 8.48 mg / L, alkalinity 100 to 150 mg /L, carbon dioxide from 25.90 to 28.95 mg / L, BOD from 0.20 to 0.38. Refers to the standards of water quality according to the PP. 82, 2001, it could be concluded that water physical-chemical qualities in fish farming locations in the Village Klamalu were still in good condition. Keywords: Water physical-chemical quality, aquaculture, waduk Embung Klamalu


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Yashon O. Ouma ◽  
Clinton O. Okuku ◽  
Evalyne N. Njau

The process of predicting water quality over a catchment area is complex due to the inherently nonlinear interactions between the water quality parameters and their temporal and spatial variability. The empirical, conceptual, and physical distributed models for the simulation of hydrological interactions may not adequately represent the nonlinear dynamics in the process of water quality prediction, especially in watersheds with scarce water quality monitoring networks. To overcome the lack of data in water quality monitoring and prediction, this paper presents an approach based on the feedforward neural network (FNN) model for the simulation and prediction of dissolved oxygen (DO) in the Nyando River basin in Kenya. To understand the influence of the contributing factors to the DO variations, the model considered the inputs from the available water quality parameters (WQPs) including discharge, electrical conductivity (EC), pH, turbidity, temperature, total phosphates (TPs), and total nitrates (TNs) as the basin land-use and land-cover (LULC) percentages. The performance of the FNN model is compared with the multiple linear regression (MLR) model. For both FNN and MLR models, the use of the eight water quality parameters yielded the best DO prediction results with respective Pearson correlation coefficient R values of 0.8546 and 0.6199. In the model optimization, EC, TP, TN, pH, and temperature were most significant contributing water quality parameters with 85.5% in DO prediction. For both models, LULC gave the best results with successful prediction of DO at nearly 98% degree of accuracy, with the combination of LULC and the water quality parameters presenting the same degree of accuracy for both FNN and MLR models.


2019 ◽  
Vol 9 (12) ◽  
pp. 2534 ◽  
Author(s):  
Mohammad Zounemat-Kermani ◽  
Youngmin Seo ◽  
Sungwon Kim ◽  
Mohammad Ali Ghorbani ◽  
Saeed Samadianfard ◽  
...  

This study evaluates standalone and hybrid soft computing models for predicting dissolved oxygen (DO) concentration by utilizing different water quality parameters. In the first stage, two standalone soft computing models, including multilayer perceptron (MLP) neural network and cascade correlation neural network (CCNN), were proposed for estimating the DO concentration in the St. Johns River, Florida, USA. The DO concentration and water quality parameters (e.g., chloride (Cl), nitrogen oxides (NOx), total dissolved solid (TDS), potential of hydrogen (pH), and water temperature (WT)) were used for developing the standalone models by defining six combinations of input parameters. Results were evaluated using five performance criteria metrics. Overall results revealed that the CCNN model with input combination III (CCNN-III) provided the most accurate predictions of DO concentration values (root mean square error (RMSE) = 1.261 mg/L, Nash-Sutcliffe coefficient (NSE) = 0.736, Willmott’s index of agreement (WI) = 0.919, R2 = 0.801, and mean absolute error (MAE) = 0.989 mg/L) for the standalone model category. In the second stage, two decomposition approaches, including discrete wavelet transform (DWT) and variational mode decomposition (VMD), were employed to improve the accuracy of DO concentration using the MLP and CCNN models with input combination III (e.g., DWT-MLP-III, DWT-CCNN-III, VMD-MLP-III, and VMD-CCNN-III). From the results, the DWT-MLP-III and VMD-MLP-III models provided better accuracy than the standalone models (e.g., MLP-III and CCNN-III). Comparison of the best hybrid soft computing models showed that the VMD-MLP-III model with 4 intrinsic mode functions (IMFs) and 10 quadratic penalty factor (VMD-MLP-III (K = 4 and α = 10)) model yielded slightly better performance than the DWT-MLP-III with Daubechies-6 (D6) and Symmlet-6 (S6) (DWT-MLP-III (D6 and S6)) models. Unfortunately, the DWT-CCNN-III and VMD-CCNN-III models did not improve the performance of the CCNN-III model. It was found that the CCNN-III model cannot be used to apply the hybrid soft computing modeling for prediction of the DO concentration. Graphical comparisons (e.g., Taylor diagram and violin plot) were also utilized to examine the similarity between the observed and predicted DO concentration values. The DWT-MLP-III and VMD-MLP-III models can be an alternative tool for accurate prediction of the DO concentration values.


2015 ◽  
Vol 6 (1) ◽  
pp. 59-67
Author(s):  
K Rakiba ◽  
Z Ferdoushi

Among different water quality parameters dissolved oxygen, transparency, pH, PO4-P and depth varied significantly among the sampling sites. The pH value in the present investigation remained a buffer condition (6.50- 7.90). Dissolved oxygen was ranges from 3.80 to 11.60 mg/l throughout the study periods. PO4-P concentration was observed highest (0.30 mg/l) in sampling site 2. On the basis of physical, chemical aspects sampling site 3 and sampling site 5 (situated in gosaipur and chandandoho) found in better condition in terms of limnological aspects. However, it could be concluded that Dhepa River will play important role in riverine fisheries and for further fisheries management.DOI: http://dx.doi.org/10.3329/jesnr.v6i1.22041 J. Environ. Sci. & Natural Resources, 6(1): 59-67 2013


2020 ◽  
Vol 56 (1) ◽  
pp. 99-110
Author(s):  
Victor Carrozza Barcellini ◽  
Ângela Tavares Paes ◽  
Simone Georges El Khouri Miraglia

The present study proposes a diagnosis of water quality and fishery production in the Estuarine Complex of Santos, São Vicente, and Bertioga Cities as a requirement for economic valuation of water pollution impacts on fishing production. In the study period (2009–2014), three water quality parameters were identified (dissolved oxygen, total phosphorus, and nitrate), which occurred more frequently in non-conformity with Brazilian water standards, according to reports released by the Environmental Company of São Paulo State (Companhia Ambiental do Estado de São Paulo — CETESB). For data collection of fishery production, data from the monitoring of Institute of Fisheries of Santos City (Instituto de Pesca de Santos) were used, and 15 species were identified with higher occurrence in the study area. The relation between water quality parameters and fishery production was analyzed with mixed linear models, in which significant values for dissolved oxygen parameters, total phosphorus (positive relation), and nitrate (negative relation) were found. Environmental valuation considered only the direct use values (DUV) component of the valuation of fishery production variation in relation to water quality variation. For this purpose, the Marginal Productivity Method (MPM) of the dose-response function was used, which resulted in a range of monetary loss between US$ 24,760,550.22 and US$ 60,635,978.78. The obtained values represent only a portion of the valuation of economic and environmental loss in the fishing activity (part of DUV). Therefore, economic value calculated is conservative, and although it did not reached the total amount corresponding to all the impacts caused by poor water quality, given the limitations of methods and study period, the obtained values represent the minimum environmental monetary loss.


Author(s):  
M. K. M. R. Guerrero ◽  
J. A. M. Vivar ◽  
R. V. Ramos ◽  
A. M. Tamondong

Abstract. The sensitivity to changes in water quality inherent to seagrass communities makes them vital for determining the overall health of the coastal ecosystem. Numerous efforts including community-based coastal resource management, conservation and rehabilitation plans are currently undertaken to protect these marine species. In this study, the relationship of water quality parameters, specifically chlorophyll-a (chl-a) and turbidity, with seagrass percent cover is assessed quantitatively. Support Vector Machine, a pixel-based image classification method, is applied to determine seagrass and non-seagrass areas from the orthomosaic which yielded a 91.0369% accuracy. In-situ measurements of chl-a and turbidity are acquired using an infinity-CLW water quality sensor. Geostatistical techniques are utilized in this study to determine accurate surfaces for chl-a and turbidity. In two hundred interpolation tests for both chl-a and turbidity, Simple Kriging (Gaussian-model type and Smooth- neighborhood type) performs best with Mean Prediction equal to −0.1371 FTU and 0.0061 μg/L, Root Mean Square Standardized error equal to −0.0688 FTU and −0.0048 μg/L, RMS error of 8.7699 FTU and 1.8006 μg/L and Average Standard Error equal to 10.8360 FTU and 1.6726 μg/L. Zones are determined using fishnet tool and Moran’s I to calculate for the seagrass percent cover. Ordinary Least Squares (OLS) is used as a regression analysis to quantify the relationship of seagrass percent cover and water quality parameters. The regression analysis result indicates that turbidity has an inverse relationship while chlorophyll-a has a direct relationship with seagrass percent cover.


Sign in / Sign up

Export Citation Format

Share Document