scholarly journals Non-Contact Damage Detection under Operational Conditions with Multipoint Laservibrometry

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 732 ◽  
Author(s):  
Xiaodong Cao ◽  
Christian Rembe

Scanning laser–Doppler vibrometry (SLDV) can localize and visualize damages in mechanical structures. In order to enable scanning, it is necessary to repeat the vibration. Therefore, this technique is not suited to detect emerging hazards in working machinery that change the vibration behavior. A common technique for such cases is monitoring the vibration excited by machine operation with accelerometers. This technique requires mechanical coupling between sensors and the measurement object, which influences the high-frequency vibration responses. However, in the low-frequency range, local damages do not shift resonances or distort operational deflection shapes (ODS) significantly. These alterations in the vibration behavior are tiny and hard to detect. This paper shows that multipoint laservibrometry (MPV) with laser excitation can measure these effects efficiently, and it further demonstrates that damages influence ODSs at frequencies above 20 kHz much stronger than at frequencies below 20 kHz. In addition, ODS-based damage indices are discussed; these are highly sensitive to minute visible changes of the ODSs. In order to enhance the sensitivity of hazard detection, the response vector assurance criterion value is computed and evaluated during operation. The capabilities and limitations of the methodology on the example of a cantilever with manually emerging damage are demonstrated.

2021 ◽  
pp. 104063872110214
Author(s):  
Deepanker Tewari ◽  
David Steward ◽  
Melinda Fasnacht ◽  
Julia Livengood

Chronic wasting disease (CWD) is a prion-mediated, transmissible disease of cervids, including deer ( Odocoileus spp.), which is characterized by spongiform encephalopathy and death of the prion-infected animals. Official surveillance in the United States using immunohistochemistry (IHC) and ELISA entails the laborious collection of lymphoid and/or brainstem tissue after death. New, highly sensitive prion detection methods, such as real-time quaking-induced conversion (RT-QuIC), have shown promise in detecting abnormal prions from both antemortem and postmortem specimens. We compared RT-QuIC with ELISA and IHC for CWD detection utilizing deer retropharyngeal lymph node (RLN) tissues in a diagnostic laboratory setting. The RLNs were collected postmortem from hunter-harvested animals. RT-QuIC showed 100% sensitivity and specificity for 50 deer RLN (35 positive by both IHC and ELISA, 15 negative) included in our study. All deer were also genotyped for PRNP polymorphism. Most deer were homozygous at codons 95, 96, 116, and 226 (QQ/GG/AA/QQ genotype, with frequency 0.86), which are the codons implicated in disease susceptibility. Heterozygosity was noticed in Pennsylvania deer, albeit at a very low frequency, for codons 95GS (0.06) and 96QH (0.08), but deer with these genotypes were still found to be CWD prion-infected.


2013 ◽  
Vol 137 (11) ◽  
pp. 1560-1568 ◽  
Author(s):  
Jane Zhou ◽  
Diana Bell ◽  
L. Jeffrey Medeiros

Context.—Myeloid sarcoma of the head and neck region can pose diagnostic challenges because of the low frequency of myeloid sarcoma and the potential for tumors of almost any lineage to occur in the head and neck. Objective.—To study the clinicopathologic and immunohistochemical characteristics of myeloid sarcoma in the head and neck region and to review the differential diagnosis. Design.—We searched for cases of myeloid sarcoma involving the head and neck region for a 24-year period at our institution. The medical records and pathology slides were reviewed. Additional immunohistochemical stains were performed. Results.—We identified 17 patients, age 17 to 85 years. Most tumors involved the oral cavity. Myeloid sarcoma was the initial diagnosis in 9 patients (53%); the remaining 8 patients (47%) had a history of bone marrow disease. Immunohistochemical analysis using antibodies specific for lysozyme, CD43, and CD68 were highly sensitive for diagnosis but were not specific. By contrast, assessment for myeloperoxidase in this study was less sensitive but more specific. We also used antibodies specific for CD11c and CD33 in a subset of cases, and these reagents seem helpful as well. Conclusions.—The clinical presentation of myeloid sarcoma involving the head and neck, particularly the mouth, is often nonspecific, and a high degree of suspicion for the possibility of myeloid sarcoma is needed. Immunohistochemistry is very helpful for establishing the diagnosis.


1998 ◽  
Vol 41 (3) ◽  
Author(s):  
P. Palangio

A broadband two axis flux-gate magnetometer was developed to obtain high sensitivity in magnetotelluric measurements. In magnetotelluric sounding, natural low frequency electromagnetic fields are used to estimate the conductivity of the Earth's interior. Because variations in the natural magnetic field have small amplitude(10-100 pT) in the frequency range 1 Hz to 100 Hz, highly sensitive magnetic sensors are required. In magnetotelluric measurements two long and heavy solenoids, which must be installed, in the field station, perpendicular to each other (north-south and east-west) and levelled in the horizontal plane are used. The coil is a critical component in magnetotelluric measurements because very slight motions create noise voltages, particularly troublesome in wooded areas; generally the installation takes place in a shallow trench. Moreover the coil records the derivative of the variations rather than the magnetic field variations, consequently the transfer function (amplitude and phase) of this sensor is not constant throughout the frequency range 0.001-100 Hz. The instrument, developed at L'Aquila Geomagnetic Observatory, has a flat response in both amplitude and phase in the frequency band DC-100 Hz, in addition it has low weight, low power, small volume and it is easier to install in the field than induction magnetometers. The sensivity of this magnetometer is 10 pT rms.


2021 ◽  
Author(s):  
Josu Amorebieta ◽  
Angel Ortega-Gomez ◽  
Gaizka Durana ◽  
Enrique Antonio-Lopez ◽  
Axel Schülzgen ◽  
...  

Author(s):  
M. H. Ansari ◽  
M. Amin Karami

A three dimensional piezoelectric vibration energy harvester is designed to generate electricity from heartbeat vibrations. The device consists of several bimorph piezoelectric beams stacked on top of each other. These horizontal bimorph beams are connected to each other by rigid vertical beams making a fan-folded geometry. One end of the design is clamped and the other end is free. One major problem in micro-scale piezoelectric energy harvesters is their high natural frequency. The same challenge is faced in development of a compact vibration energy harvester for the low frequency heartbeat vibrations. One way to decrease the natural frequency is to increase the length of the bimorph beam. This approach is not usually practical due to size limitations. By utilizing the fan-folded geometry, the natural frequency is decreased while the size constraints are observed. The required size limit of the energy harvester is 1 cm by 1 cm by 1 cm. In this paper, the natural frequencies and mode shapes of fan-folded energy harvesters are analytically derived. The electro-mechanical coupling has been included in the model for the piezoelectric beam. The design criteria for the device are discussed.


2011 ◽  
Vol 19 (01) ◽  
pp. 57-68 ◽  
Author(s):  
MIGUEL PADILLA

Commercial multiple evaporators variable refrigerant flow (VRF) HVAC systems present many advantages such as being energy saving and the capability of adjusting refrigerant mass flow rate according to the change of high rises occurrence. This paper deals with an experimental control volume exergy analysis in a VRF air conditioning system. The experimental results show that the brunt of the total exergy destroyed in the whole system occurs in the outdoor unit, where the exergy destroyed in the condenser is more important. The values of coefficient of performance (COP) obtained for the tests increase as the system reaches operational conditions imposed in every indoor unit zone. The VRF system analyzed is highly sensitive to the action of the constant speed compressor. The use of an inverter compressor improves the system performance by adjusting the power consumption according to the cooling load in the evaporators.


2020 ◽  
Vol 77 (10) ◽  
pp. 3461-3477
Author(s):  
Rebecca D. Adams-Selin

AbstractThe sensitivity of low-frequency gravity waves generated during the development and mature stages of an MCS to variations in the characteristics of the rimed ice parameterization were tested through idealized numerical simulations over a range of environment shears and instabilities. Latent cooling in the simulations with less dense, graupel-like rimed ice was more concentrated aloft near the melting level, while cooling in simulations with denser, hail-like rimed ice extended from the melting level to the surface. However, the cooling profiles still had significant internal variability across different environments and over each simulation’s duration. Initial wave production during the MCS developing stage was fairly similar in the hail and graupel simulations. During the mature stages, graupel simulations showed stronger perturbations in CAPE due to the cooling and associated wave vertical motion being farther aloft; hail simulations showed stronger perturbations in LFC due to cooling and wave vertical motion being concentrated at lower levels. The differences in the cooling profiles were not uniform enough to produce consistently different higher-order wave modes. However, the initiation of discrete cells ahead of the convective line was found to be highly sensitive to the nature of the prior destabilizing wave. Individual events of discrete propagation were suppressed in some of the graupel simulations due to the higher location of both peak cooling and vertical wave motion. Such results underscore the need to fully characterize MCS microphysical heating profiles and their low-frequency gravity waves to understand their structure and development.


2017 ◽  
Vol 34 (8) ◽  
pp. 1743-1748 ◽  
Author(s):  
Alexander Antonov ◽  
Anna Shabalina ◽  
Andrey Razin ◽  
Svetlana Avdyukhina ◽  
Ivan Egorov ◽  
...  

AbstractA self-contained seismic station that has a modular structure adjustable to different operational conditions—like onshore, offshore to 500-m depth, and at transition zones—has been developed and field tested. The station operation frequency band is 1–300 Hz, which is wider than that of the majority of seismic stations based on using standard (10 Hz) geophones. Such improvement was achieved through the use of molecular-electronic transfer seismic sensors that allow for covering a low-frequency part of the spectrum that is needed for broadband processing and receiving information on subsurface formation. Basically, the system includes a module of sensing elements, a module of digital electronics, and a battery module. Optionally, a self-surfacing module could be used. The field test of the station was performed in August 2016 in the Sea of Azov.


Sign in / Sign up

Export Citation Format

Share Document