scholarly journals Nitrogen-Doped Graphene: The Influence of Doping Level on the Charge-Transfer Resistance and Apparent Heterogeneous Electron Transfer Rate

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1815 ◽  
Author(s):  
Maria Coros ◽  
Codruta Varodi ◽  
Florina Pogacean ◽  
Emese Gal ◽  
Stela M. Pruneanu

Three nitrogen-doped graphene samples were synthesized by the hydrothermal method using urea as doping/reducing agent for graphene oxide (GO), previously dispersed in water. The mixture was poured into an autoclave and placed in the oven at 160 °C for 3, 8 and 12 h. The samples were correspondingly denoted NGr-1, NGr-2 and NGr-3. The effect of the reaction time on the morphology, structure and electrochemical properties of the resulting materials was thoroughly investigated using scanning electron microscopy (SEM) Raman spectroscopy, X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), elemental analysis, Cyclic Voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For NGr-1 and NGr-2, the nitrogen concentration obtained from elemental analysis was around 6.36 wt%. In the case of NGr-3, a slightly higher concentration of 6.85 wt% was obtained. The electrochemical studies performed with NGr modified electrodes proved that the charge-transfer resistance (Rct) and the apparent heterogeneous electron transfer rate constant (Kapp) depend not only on the nitrogen doping level but also on the type of nitrogen atoms found at the surface (pyrrolic-N, pyridinic-N or graphitic-N). In our case, the NGr-1 sample which has the lowest doping level and the highest concentration of pyrrolic-N among all nitrogen-doped samples exhibits the best electrochemical parameters: a very small Rct (38.3 Ω), a large Kapp (13.9 × 10−2 cm/s) and the best electrochemical response towards 8-hydroxy-2′-deoxyguanosine detection (8-OHdG).

RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 55577-55583 ◽  
Author(s):  
Seung Yong Lee ◽  
Chang Hyuck Choi ◽  
Min Wook Chung ◽  
Jae Hoon Chung ◽  
Seong Ihl Woo

In supercapacitors, one dimensional graphene ribbons which form net-like porous structure demonstrate low mass transfer resistance at low frequency region and a consequent efficient charge transferability.


2015 ◽  
Vol 634 ◽  
pp. 89-94 ◽  
Author(s):  
F. Späth ◽  
W. Zhao ◽  
C. Gleichweit ◽  
K. Gotterbarm ◽  
U. Bauer ◽  
...  

2014 ◽  
Vol 1070-1072 ◽  
pp. 459-464
Author(s):  
Chang Jing Fu ◽  
Shuang Li ◽  
Qian Wang

Nitrogen-doped graphene (N-rGO) was synthesized in the process of preparation of reduced graphene oxide from the expanded graphite through the improved Hummers’ method. The morphology, structure and composition of nitrogen-doped graphene oxide (GO) and N-rGO were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The nitrogen content of N-rGO was approximately 5 at.%. The electrochemical performances of N-rGO as anode materials for lithium-ion batteries were evaluated in coin-type cells versus metallic lithium. Results showed that the obtained N-rGO exhibited a higher reversible specific capacity of 519 mAh g-1 at a current density of 100 mA⋅g-1 and 207.5 mAh⋅g-1 at a current density of 2000 mA⋅g-1. The excellent cycling stability and high-rate capability of N-rGO as anodes of lithium-ion battery were attributed to the large number of surface defects caused by the nitrogen doping, which facilitates the fast transport of Li-ion and electron on the interface of electrolyte/electrode.


2014 ◽  
Vol 804 ◽  
pp. 35-38
Author(s):  
Sen Liang ◽  
Min Luo ◽  
Yuan Yun Dou ◽  
Lei Guo ◽  
Bin Liang ◽  
...  

In this study, nitrogen doped graphene (NG) was prepared by using hydrothermal treatment of graphene oxide (GO) and ethylene diamine (EDA). The surface chemistry of the reduced graphene oxide (rGO) and the NG was investigated by the X-ray photoelectron spectroscopy (XPS). The results revealed that there were four kinds of nitrogen substitution: pyrollic N, pyridinic N, graphitic N and C-NH2. Further, the electrical measurements illustrated that the NG had superior capacitive performance than that of the rGO. Specifically, the maximum specific capacitance of NG was 200.6 F/g due to the double-layer capacitive and pseudocapacitive effect from the nitrogen-doped graphene. In addition, the present studies showed that the EDA was not only choose as nitrogen doping source but also played a key role in reduction.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3543
Author(s):  
Zhipeng Liu ◽  
Quanyong Wang ◽  
Bei Zhang ◽  
Tao Wu ◽  
Yujiang Li

Green petroleum coke, a form of industrial waste produced in the oil-refining process, was used to synthesize nitrogen-doped graphene-like plates (N-GLPs) together with melamine. In this study, characterization and batch experiments were performed to elucidate the interaction mechanism of N-GLPs and bisphenol A (BPA). Structural analysis of N-GLPs, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS), showed an obvious graphene-like structure and successful nitrogen doping. In addition, compared with 8.0 m2/g for green petroleum coke, the BET surface area of N-GLPs markedly increased to 96.6 m2/g. The influences of various factors, including contact time, temperature, and initial pH on BPA removal efficiency were investigated. It was found that 92.0% of BPA was successfully removed by N-GLPs at 50 °C. Based on the adsorption experiments, it was shown that electrostatic attraction, hydrogen bonding, and π-π interaction enhanced the adsorption capacity of N-GLPs for BPA. According to the thermodynamic data, the adsorption process was spontaneous, physical, and endothermic in nature. Therefore, N-GLPs are efficient adsorbent material to remove BPA from wastewater.


2019 ◽  
Vol 9 (6) ◽  
pp. 1040 ◽  
Author(s):  
Beng Chong ◽  
Nur Azman ◽  
Muhammad Mohd Abdah ◽  
Yusran Sulaiman

Nitrogen-doped graphene (NDG) and mixed metal oxides have been attracting much attention as the combination of these materials resulted in enhanced electrochemical properties. In this study, a composite of nitrogen-doped graphene/manganese oxide/iron oxide (NDG/Mn3O4/Fe3O4) for a supercapacitor was prepared through the hydrothermal method, followed by freeze-drying. Field emission scanning electron microscopy (FESEM) images revealed that the NDG/Mn3O4/Fe3O4 composite displayed wrinkled-like sheets morphology with Mn3O4 and Fe3O4 particles attached on the surface of NDG. The presence of NDG, Mn3O4, and Fe3O4 was characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The electrochemical studies revealed that the NDG/Mn3O4/Fe3O4 composite exhibited the highest specific capacitance (158.46 F/g) compared to NDG/Fe3O4 (130.41 F/g), NDG/Mn3O4 (147.55 F/g), and NDG (74.35 F/g) in 1 M Na2SO4 at a scan rate of 50 mV/s due to the synergistic effect between bimetallic oxides, which provide richer redox reaction and high conductivity. The galvanostatic charge discharge (GCD) result demonstrated that, at a current density of 0.5 A/g, the discharging time of NDG/Mn3O4/Fe3O4 is the longest compared to NDG/Mn3O4 and NDG/Fe3O4, indicating that it had the largest charge storage capacity. NDG/Mn3O4/Fe3O4 also exhibited the smallest resistance of charge transfer (Rct) value (1.35 Ω), showing its excellent charge transfer behavior at the interface region and good cyclic stability by manifesting a capacity retention of 100.4%, even after 5000 cycles.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 309 ◽  
Author(s):  
Cheng Wang ◽  
Ming Song ◽  
Xianhui Chen ◽  
Dongning Li ◽  
Weiluo Xia ◽  
...  

A thermal plasma process at atmospheric pressure is an attractive method for continuous synthesis of graphene flakes. In this paper, a magnetically rotating arc plasma system is employed to investigate the effects of buffer gases on graphene flakes synthesis in a thermal plasma process. Carbon nanomaterials are prepared in Ar, He, Ar-H2, and Ar-N2 via propane decomposition, and the product characterization is performed by transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and the Brunauer–Emmett–Teller (BET) method. Results show that spherical particles, semi-graphitic particles, and graphene flakes coexist in products under an Ar atmosphere. Under an He atmosphere, all products are graphene flakes. Graphene flakes with fewer layers, higher crystallinity, and a larger BET surface area are prepared in Ar-H2 and Ar-N2. Preliminary analysis reveals that a high-energy environment and abundant H atoms can suppress the formation of curved or closed structures, which leads to the production of graphene flakes with high crystallinity. Furthermore, nitrogen-doped graphene flakes with 1–4 layers are successfully synthesized with the addition of N2, which indicates the thermal plasma process also has great potential for the synthesis of nitrogen-doped graphene flakes due to its continuous manner, cheap raw materials, and adjustable nitrogen-doped content.


Sign in / Sign up

Export Citation Format

Share Document