scholarly journals Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3096 ◽  
Author(s):  
Vahid Amiri ◽  
Hossein Roshan ◽  
Ali Mirzaei ◽  
Giovanni Neri ◽  
Ahmad I. Ayesh

Acetone is a well-known volatile organic compound that is widely used in different industrial and domestic areas. However, it can have dangerous effects on human life and health. Thus, the realization of sensitive and selective sensors for recognition of acetone is highly important. Among different gas sensors, resistive gas sensors based on nanostructured metal oxide with high surface area, have been widely reported for successful detection of acetone gas, owing to their high sensitivity, fast dynamics, high stability, and low price. Herein, we discuss different aspects of metal oxide-based acetone gas sensors in pristine, composite, doped, and noble metal functionalized forms. Gas sensing mechanisms are also discussed. This review is an informative document for those who are working in the field of gas sensors.

This paper provides a complete idea about metal oxide semiconductors ((MOSs) for gas sensing application. Metal oxide semiconductor nano-materials are showing much higher strength in many industries, research laboratories and public health and so on with their effective chemical, physical, and electronic properties. The morphology, band gap, porosity, conductivity properties, low cost and high surface area etc. are few of the properties of MOSs that are responsible for the enhancement of sensing properties in various applications. Besides these, now-a-days MOSs are grown in different nanostructures like nano rods, nano flowers, nano sheets, nanowires etc. using the various growth techniques which are further responsible for their betterment as gas sensors. Therefore, this paper gives a complete idea about the different methods of synthesis of MOSs.


2017 ◽  
Vol 114 (35) ◽  
pp. 9279-9283 ◽  
Author(s):  
Prateek Dongare ◽  
Ian MacKenzie ◽  
Degao Wang ◽  
David A. Nicewicz ◽  
Thomas J. Meyer

We describe here a surface-bound, oxide-based procedure for the photooxidation of a family of aromatic hydrocarbons by a phosphate-bearing flavin mononucleotide (FMN) photocatalyst on high surface area metal-oxide films.


2014 ◽  
Vol 605 ◽  
pp. 299-302 ◽  
Author(s):  
Jerome Rossignol ◽  
Didier Stuerga

In literature, many papers describe the applications of semiconductor as sensitive material in sensor field. The gas sensor using tin oxide requires a strictly controlled high operating temperature in order to detect both reducing and oxidizing gases. The semiconductor nanoparticles, with their high specific surface area, increase the gas sensing performance. The originality of this work is to valorize the nanoparticle of metal oxide like SnO2, TiO2 obtained by microwave thermohydrolysis synthesis, using a gas sensing microwave transduction. The present synthesis is to prepare metal oxide nanocrystalline powder with a high surface area by microwave-induced thermohydrolysis. We propose to study the influence of the metal oxide nanoparticle, as a sensitive layer, in gas sensing measurement. The pollutant is added into an argon flow (dynamic regim). This work highlights a specific sensor response to each ammonia concentration at room temperature. It shows a quasi-linear relationship between the set of points of the real part of the response and the ammonia concentration. The authors are currently working on these issues as well as the interaction mechanism between adsorbed gas molecules and metal oxide films.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sanggon Kim ◽  
Jacob Brady ◽  
Faraj Al-Badani ◽  
Sooyoun Yu ◽  
Joseph Hart ◽  
...  

Significant scientific efforts have been made to mimic and potentially supersede the mammalian nose using artificial noses based on arrays of individual cross-sensitive gas sensors over the past couple decades. To this end, thousands of research articles have been published regarding the design of gas sensor arrays to function as artificial noses. Nanoengineered materials possessing high surface area for enhanced reaction kinetics and uniquely tunable optical, electronic, and optoelectronic properties have been extensively used as gas sensing materials in single gas sensors and sensor arrays. Therefore, nanoengineered materials address some of the shortcomings in sensitivity and selectivity inherent in microscale and macroscale materials for chemical sensors. In this article, the fundamental gas sensing mechanisms are briefly reviewed for each material class and sensing modality (electrical, optical, optoelectronic), followed by a survey and review of the various strategies for engineering or functionalizing these nanomaterials to improve their gas sensing selectivity, sensitivity and other measures of gas sensing performance. Specifically, one major focus of this review is on nanoscale materials and nanoengineering approaches for semiconducting metal oxides, transition metal dichalcogenides, carbonaceous nanomaterials, conducting polymers, and others as used in single gas sensors or sensor arrays for electrical sensing modality. Additionally, this review discusses the various nano-enabled techniques and materials of optical gas detection modality, including photonic crystals, surface plasmonic sensing, and nanoscale waveguides. Strategies for improving or tuning the sensitivity and selectivity of materials toward different gases are given priority due to the importance of having cross-sensitivity and selectivity toward various analytes in designing an effective artificial nose. Furthermore, optoelectrical sensing, which has to date not served as a common sensing modality, is also reviewed to highlight potential research directions. We close with some perspective on the future development of artificial noses which utilize optical and electrical sensing modalities, with additional focus on the less researched optoelectronic sensing modality.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6781
Author(s):  
Ying Wang ◽  
Li Duan ◽  
Zhen Deng ◽  
Jianhui Liao

Semiconducting metal oxide-based nanowires (SMO-NWs) for gas sensors have been extensively studied for their extraordinary surface-to-volume ratio, high chemical and thermal stabilities, high sensitivity, and unique electronic, photonic and mechanical properties. In addition to improving the sensor response, vast developments have recently focused on the fundamental sensing mechanism, low power consumption, as well as novel applications. Herein, this review provides a state-of-art overview of electrically transduced gas sensors based on SMO-NWs. We first discuss the advanced synthesis and assembly techniques for high-quality SMO-NWs, the detailed sensor architectures, as well as the important gas-sensing performance. Relationships between the NWs structure and gas sensing performance are established by understanding general sensitization models related to size and shape, crystal defect, doped and loaded additive, and contact parameters. Moreover, major strategies for low-power gas sensors are proposed, including integrating NWs into microhotplates, self-heating operation, and designing room-temperature gas sensors. Emerging application areas of SMO-NWs-based gas sensors in disease diagnosis, environmental engineering, safety and security, flexible and wearable technology have also been studied. In the end, some insights into new challenges and future prospects for commercialization are highlighted.


2021 ◽  
Vol 9 ◽  
Author(s):  
Faheem Ullah Khan ◽  
Shahid Mehmood ◽  
Shiliang Liu ◽  
Wei Xu ◽  
Muhammad Naeem Shah ◽  
...  

As formaldehyde is an extremely toxic volatile organic pollutant, a highly sensitive and selective gas sensor for low-concentration formaldehyde monitoring is of great importance. Herein, metal-organic framework (MOF) derived Pd/PdO@ZnO porous nanostructures were synthesized through hydrothermal method followed by calcination processes. Specifically, porous Pd/PdO@ZnO nanomaterials with large surfaces were synthesized using MOFs as sacrificial templates. During the calcination procedure, an optimized temperature of 500°C was used to form a stable structure. More importantly, intensive PdO@ZnO inside the material and composite interface provides lots of p-n heterojunction to efficiently manipulate room temperature sensing performance. As the height of the energy barrier at the junction of PdO@ZnO exponentially influences the sensor resistance, the Pd/PdO@ZnO nanomaterials exhibit high sensitivity (38.57% for 100 ppm) at room temperature for 1-ppm formaldehyde with satisfactory selectivity towards (ammonia, acetone, methanol, and IPA). Besides, due to the catalytic effect of Pd and PdO, the adsorption and desorption of the gas molecules are accelerated, and the response and recovery time is as small as 256 and 264 s, respectively. Therefore, this MOF-driven strategy can prepare metal oxide composites with high surface area, well-defined morphology, and satisfactory room-temperature formaldehyde gas sensing performance for indoor air quality control.


RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24268-24275 ◽  
Author(s):  
Liping Yang ◽  
Zhou Wang ◽  
Xinyuan Zhou ◽  
Xiaofeng Wu ◽  
Ning Han ◽  
...  

This work reports a simple, rapid, effective and reliable CH4 sensor based on Pd-loaded SnO2 hollow spheres with high surface area and porosity, which is of great importance to gas sensing performance.


MRS Advances ◽  
2016 ◽  
Vol 1 (46) ◽  
pp. 3157-3162 ◽  
Author(s):  
Ritu Malik ◽  
Vijay K. Tomer ◽  
Surender Duhan ◽  
Pawan S. Rana ◽  
S. P. Nehra

ABSTRACTA facile technique was adopted to synthesize beautiful lilac bush resembling TiO2-SnO2 microflowers aggregates for photodegradation of Congo Red (CR). The TiO2-SnO2 microflowers in the 2-3 μm range with high surface area (80 m2/g), under optimized conditions of catalyst dosage (0.3 g/L), dye concentration (100 ppm) and pH value is 10, exhibit excellent photocatalytic activity under visible light, whereby, 98.3% of the CR aqueous solution was degraded in 40 min of illumination time and also shows good recyclable photocatalytic activities. Further, the gas sensing properties of the as-synthesized material were evaluated towards detection of a variety of volatile organic compounds, such as acetone, methanol, benzene, ammonia, toluene, diethyl ether, and ethanol.


Sign in / Sign up

Export Citation Format

Share Document