scholarly journals Enhancing the Sensing Performance of Zigzag Graphene Nanoribbon to Detect NO, NO2, and NH3 Gases

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3932 ◽  
Author(s):  
Ehab Salih ◽  
Ahmad I. Ayesh

In this article, a zigzag graphene nanoribbon (ZGNR)-based sensor was built utilizing the Atomistic ToolKit Virtual NanoLab (ATK-VNL), and used to detect nitric oxide (NO), nitrogen dioxide (NO2), and ammonia (NH3). The successful adsorption of these gases on the surface of the ZGNR was investigated using adsorption energy (Eads), adsorption distance (D), charge transfer (∆Q), density of states (DOS), and band structure. Among the three gases, the ZGNR showed the highest adsorption energy for NO with −0.273 eV, the smallest adsorption distance with 2.88 Å, and the highest charge transfer with −0.104 e. Moreover, the DOS results reflected a significant increase of the density at the Fermi level due to the improvement of ZGNR conductivity as a result of gas adsorption. The surface of ZGNR was then modified with an epoxy group (-O-) once, then with a hydroxyl group (-OH), and finally with both (-O-) and (-OH) groups in order to improve the adsorption capacity of ZGNR. The adsorption parameters of ZGNR were improved significantly after the modification. The highest adsorption energy was found for the case of ZGNR-O-OH-NO2 with −0.953 eV, while the highest charge transfer was found for the case of ZGNR-OH-NO with −0.146 e. Consequently, ZGNR-OH and ZGNR-O-OH can be considered as promising gas sensors for NO and NO2, respectively.

2017 ◽  
Vol 16 (01) ◽  
pp. 1750004 ◽  
Author(s):  
Min Ji ◽  
Xinlu Cheng ◽  
Weidong Wu

The density functional theory (DFT) was used to investigate some toxic derivatives of aromatic hydrocarbons adsorption on perfect graphene (pG) and graphene-doped with B/Al/Ga (BG/AlG/GaG). And the parallel and vertical adsorptions were considered for the position relation between the adsorbent and adsorbate. The adsorption energy, adsorption distance, charge transfer and density of states (DOS) were discussed in optimized structures. The greater adsorption energy, shorter adsorption distance and more charge transfer were found in AlG by studying the four kinds of molecules (phenol/m-cresol/PCP/p-NP) adsorption on pG/BG/AlG/GaG. Then, 10 derivatives adsorption on AlG were reported, and the adsorption energy increased in the order of pentachlorophenol [Formula: see text] 2,4,6-trichlorophenol [Formula: see text] 2,4-dichlorophenol [Formula: see text] p-cresol [Formula: see text] m-cresol [Formula: see text] phenol [Formula: see text] o-chlorophenol [Formula: see text] o-cresol [Formula: see text] 2,4,6-trintrotoluene [Formula: see text] para-nitrophenol. The interaction between these derivatives and the substrate was chemisorption for AlG and physisorption for pG. The oxygen atom in nitro group was more closer to the substrate than in hydroxyl group about optimized structures.


2021 ◽  
pp. 2150154
Author(s):  
Wenchao Tian ◽  
Jiahao Niu ◽  
Wenhua Li ◽  
Xiaohan Liu

The two-dimensional (2D) plane of graphene has many active sites for gas adsorption. It has broad application prospects in the field of MEMS gas sensors. At present, there are many experimental studies on graphene gas sensors, but it is difficult to accurately control various influencing factors in the experiments. Therefore, this paper applies the first principle based on density functional theory to study the adsorption and detection characteristics of graphene on CO and CO2. The first-principles analysis method was used to study the adsorption characteristics and sensitivity of graphene. The results show that the inductive graphene has a sensitivity of 1.55% and 0.77% for CO and CO2, respectively. The Stone–Wales defects and multi-vacancy defects have greatly improved the sensitivity of graphene to CO, which is 35.25% and 4.14%, respectively. Introduction of defects increases the sensitivity of detection of CO and CO2, but also improves the selective gas detection material of these two gases. Thus, the control and selectively introducing defects may improve the detection accuracy of the graphene CO and CO2.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5921
Author(s):  
Pascal M. Gschwend ◽  
Florian M. Schenk ◽  
Alexander Gogos ◽  
Sotiris E. Pratsinis

Noble metal additives are widely used to improve the performance of metal oxide gas sensors, most prominently with palladium on tin oxide. Here, we photodeposit different quantities of Pd (0–3 mol%) onto nanostructured SnO2 and determine their effect on sensing acetone, a critical tracer of lipolysis by breath analysis. We focus on understanding the effect of operating temperature on acetone sensing performance (sensitivity and response/recovery times) and its relationship to catalytic oxidation of acetone through a packed bed of such Pd-loaded SnO2. The addition of Pd can either boost or deteriorate the sensing performance, depending on its loading and operating temperature. The sensor performance is optimal at Pd loadings of less than 0.2 mol% and operating temperatures of 200–262.5 °C, where acetone conversion is around 50%.


1991 ◽  
Vol 69 (10) ◽  
pp. 1528-1534 ◽  
Author(s):  
M. M. Gómez

The adsorption of hydroxyproline (HPRO) on mercury in aqueous solutions of 10−2 M KClO4 has been determined from electrocapillary and capacity measurements. Comparison of the results obtained for HPRO with those reported for proline (PRO) shows that the presence of a hydroxyl group in the molecule has a small effect on the adsorption process. The respective values for adsorption parameters are −7 and −5 μC cm−2 for the charges of maximum adsorption, −13.0 and −10.4 kj mol−1 for the standard Gibbs energies of adsorption at zero charge, and −1.28 and +0.6 for the α parameter in the Frumkin isotherms. According to the analysis carried out for the normal component of the dipole moment of HPRO, −0.8 D, the more probable orientation of this aminoacid adsorbed on mercury is with the pyrrolidine ring parallel to the electrode surface resting the OH group away from the surface. Key words: adsorption, double layer, aminoacids, hydroxyproline.


2021 ◽  
Vol MA2021-02 (55) ◽  
pp. 1589-1589
Author(s):  
Yasuhiro Shimizu ◽  
Tomotaka Ogawa ◽  
Taro Ueda ◽  
Kai Kamada ◽  
Takeo Hyodo

Sign in / Sign up

Export Citation Format

Share Document