scholarly journals Neuromorphic Vision Based Contact-Level Classification in Robotic Grasping Applications

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4724
Author(s):  
Xiaoqian Huang ◽  
Rajkumar Muthusamy ◽  
Eman Hassan ◽  
Zhenwei Niu ◽  
Lakmal Seneviratne ◽  
...  

In recent years, robotic sorting is widely used in the industry, which is driven by necessity and opportunity. In this paper, a novel neuromorphic vision-based tactile sensing approach for robotic sorting application is proposed. This approach has low latency and low power consumption when compared to conventional vision-based tactile sensing techniques. Two Machine Learning (ML) methods, namely, Support Vector Machine (SVM) and Dynamic Time Warping-K Nearest Neighbor (DTW-KNN), are developed to classify material hardness, object size, and grasping force. An Event-Based Object Grasping (EBOG) experimental setup is developed to acquire datasets, where 243 experiments are produced to train the proposed classifiers. Based on predictions of the classifiers, objects can be automatically sorted. If the prediction accuracy is below a certain threshold, the gripper re-adjusts and re-grasps until reaching a proper grasp. The proposed ML method achieves good prediction accuracy, which shows the effectiveness and the applicability of the proposed approach. The experimental results show that the developed SVM model outperforms the DTW-KNN model in term of accuracy and efficiency for real time contact-level classification.

2011 ◽  
Vol 109 ◽  
pp. 636-640
Author(s):  
Bo Tang ◽  
Min Xia

With China's rapid economic development, credit scoring has become very important. This paper presents a new fuzzy support vector machine algorithm used to solve the problems of credit scoring. The empirical results show that the proposed fuzzy membership model is valid ,the algorithm has good prediction accuracy and anti-noise ability.


Author(s):  
Md Nasim Khan ◽  
Mohamed M. Ahmed

Snowfall negatively affects pavement and visibility conditions, making it one of the major causes of motor vehicle crashes in winter weather. Therefore, providing drivers with real-time roadway weather information during adverse weather is crucial for safe driving. Although road weather stations can provide weather information, these stations are expensive and often do not represent real-time trajectory-level weather information. The main motivation of this study was to develop an affordable in-vehicle snow detection system which can provide trajectory-level weather information in real time. The system utilized SHRP2 Naturalistic Driving Study video data and was based on machine learning techniques. To train the snow detection models, two texture-based image features including gray level co-occurrence matrix (GLCM) and local binary pattern (LBP), and three classification algorithms: support vector machine (SVM), k-nearest neighbor (K-NN), and random forest (RF) were used. The analysis was done on an image dataset consisting of three weather conditions: clear, light snow, and heavy snow. While the highest overall prediction accuracy of the models based on the GLCM features was found to be around 86%, the models considering the LBP based features provided a much higher prediction accuracy of 96%. The snow detection system proposed in this study is cost effective, does not require a lot of technical support, and only needs a single video camera. With the advances in smartphone cameras, simple mobile apps with proper data connectivity can effectively be used to detect roadway weather conditions in real time with reasonable accuracy.


2019 ◽  
Vol 9 (2) ◽  
pp. 104 ◽  
Author(s):  
Chen-Hsiang Yu ◽  
Jungpin Wu ◽  
An-Chi Liu

Massive Open Online Courses (MOOCs) have gradually become a dominant trend in education. Since 2014, the Ministry of Education in Taiwan has been promoting MOOC programs, with successful results. The ability of students to work at their own pace, however, is associated with low MOOC completion rates and has recently become a focus. The development of a mechanism to effectively improve course completion rates continues to be of great interest to both teachers and researchers. This study established a series of learning behaviors using the video clickstream records of students, through a MOOC platform, to identify seven types of cognitive participation models of learners. We subsequently built practical machine learning models by using K-nearest neighbor (KNN), support vector machines (SVM), and artificial neural network (ANN) algorithms to predict students’ learning outcomes via their learning behaviors. The ANN machine learning method had the highest prediction accuracy. Based on the prediction results, we saw a correlation between video viewing behavior and learning outcomes. This could allow teachers to help students needing extra support successfully pass the course. To further improve our method, we classified the course videos based on their content. There were three video categories: theoretical, experimental, and analytic. Different prediction models were built for each of these three video types and their combinations. We performed the accuracy verification; our experimental results showed that we could use only theoretical and experimental video data, instead of all three types of data, to generate prediction models without significant differences in prediction accuracy. In addition to data reduction in model generation, this could help teachers evaluate the effectiveness of course videos.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jintao Zhang ◽  
Shuang Lai ◽  
Huahua Yu ◽  
Erjie Wang ◽  
Xizhe Wang ◽  
...  

As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation, as well as their variety and delicacy. In this study, a fruit identification method utilizing an adaptive gripper with tactile sensing and machine learning algorithms is reported. An adaptive robotic gripper is designed and manufactured to perform adaptive grasping. A tactile sensing information acquisition circuit is built, and force and bending sensors are integrated into the robotic gripper to measure the contact force distribution on the contact surface and the deformation of the soft fingers. A robotic manipulator platform is developed to collect the tactile sensing data in the grasping process. The performance of the random forest (RF), k-nearest neighbor (KNN), support vector classification (SVC), naive Bayes (NB), linear discriminant analysis (LDA), and ridge regression (RR) classifiers in identifying and classifying five types of fruits using the adaptive gripper is evaluated and compared. The RF classifier achieves the highest accuracy of 98%, while the accuracies of the other classifiers vary from 74% to 97%. The experiment illustrates that efficient and accurate fruit identification can be realized with the adaptive gripper and machine learning classifiers, and that the proposed method can provide a reference for controlling the grasping force and planning the robotic motion in the plucking, picking, and harvesting of fruits and vegetables.


2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
C W L Chia ◽  
S Bhatia ◽  
D Shastin ◽  
M Chamberland

Abstract Aim A third of epilepsy patients suffer from medically refractory seizures. In patients eligible for surgical treatment, seizure freedom rates remain variable. Machine learning (ML) utilises large datasets to detect patterns to make predictions. We systematically review studies employing ML models for prediction of outcome following resective epilepsy surgery to evaluate their efficacy, applicability and value in determining surgical candidacy. Method MEDLINE, Cochrane and EMBASE databases were searched for literature published between 2010 – 2020 according to PRISMA guidance. Non-refractory epilepsy, non-clinical outcome prediction, or non-human studies were excluded. Clinical and demographic data, ML features, discrimination and prediction accuracy metrics were extracted. Results 15 studies were included. Median cohort size was 49 (range 16 – 4211). Heterogeneous input data sources were utilised: MRI (n = 10) , electrophysiology (n = 4), PET (n = 2), clinical data (n = 2), and neuropsychological testing (n = 1). The most common ML model used was support vector machines (n = 7). All studies had good discrimination (AUC > 0.70, range: 0.79 [95% CI NR] - 0.94 [95% CI 0.92 – 0.96]), and good prediction accuracy (> 0.70, range: 0.76 [95% CI NR] – 0.95 [95% CI NR]). Limitations included small sample sizes, limited external validation and lack of comparison with clinician-predicted outcomes. Conclusions Machine Learning for outcome prediction could enhance clinical decision-making for surgical candidacy in epilepsy, and lead to improved precision medicine delivery. Outcome reporting remains inconsistent, and further work is required to externally validate such models to implement these to large-scale clinical populations.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Yang M. Guo ◽  
Pei He ◽  
Xiang T. Wang ◽  
Ya F. Zheng ◽  
Chong Liu ◽  
...  

Health trend prediction is critical to ensure the safe operation of highly reliable systems. However, complex systems often present complex dynamic behaviors and uncertainty, which makes it difficult to develop a precise physical prediction model. Therefore, time series is often used for prediction in this case. In this paper, in order to obtain better prediction accuracy in shorter computation time, we propose a new scheme which utilizes multiple relevant time series to enhance the completeness of the information and adopts a prediction model based on least squares support vector regression (LS-SVR) to perform prediction. In the scheme, we apply two innovative ways to overcome the drawbacks of the reported approaches. One is to remove certain support vectors by measuring the linear correlation to increase sparseness of LS-SVR; the other one is to determine the linear combination weights of multiple kernels by calculating the root mean squared error of each basis kernel. The results of prediction experiments indicate preliminarily that the proposed method is an effective approach for its good prediction accuracy and low computation time, and it is a valuable method in applications.


Author(s):  
Trinh Dinh Toan ◽  
Viet-Hung Truong

Short-term prediction of traffic flow is essential for the deployment of intelligent transportation systems. In this paper we present an efficient method for short-term traffic flow prediction using a Support Vector Machine (SVM) in comparison with baseline methods, including the historical average, the Current Time Based, and the Double Exponential Smoothing predictors. To demonstrate the efficiency and accuracy of the SVM method, we used one-month time-series traffic flow data on a segment of the Pan Island Expressway in Singapore for training and testing the model. The results show that the SVM method significantly outperforms the baseline methods for most prediction intervals, and under various traffic conditions, for the rolling horizon of 30 min. In investigating the effect of the input-data dimension on prediction accuracy, we found that the rolling horizon has a clear effect on the SVM’s prediction accuracy: for the rolling horizon of 30–60 min, the longer the rolling horizon, the more accurate the SVM prediction is. To look for a solution for improvement of the SVM’s training performance, we investigate the application of k-Nearest Neighbor method for SVM training using both actual data and simulated incident data. The results show that the k- Nearest Neighbor method facilitates a substantial reduction of SVM training size to accelerate the training without compromising predictive performance.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


Sign in / Sign up

Export Citation Format

Share Document