scholarly journals Influence of Ultrasonic Wind Sensor Position on Measurement Accuracy under Full-Scale Conditions

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5640
Author(s):  
Tomasz Lipecki ◽  
Paulina Jamińska-Gadomska ◽  
Andrzej Sumorek

A system designed for making field measurements of wind action on engineering structures is described. The system is composed of sonic anemometers, differential pressure sensors, a barometer, and a thermohygrometer. The focus of this study is to determine the indications of sonic anemometers; to accomplish this goal, wind tunnel tests were performed. The tests did not involve checking the accuracy of the devices themselves, but determining their indications under field measurement conditions where certain unavoidable errors resulting from their installation can appear. The anemometer measurement uncertainty with respect to wind speed and angle was determined. The devices were rotated in a horizontal plane and inclined against and with the mean wind speed direction in a wind tunnel. Different tunnel wind speeds were tested. The results indicate stable device readings at different horizontal plane positions at different wind speeds and a low sensitivity to changes in inclination against the inflow.

Author(s):  
Kazutoshi Matsuda ◽  
Kusuo Kato ◽  
Kouki Arise ◽  
Hajime Ishii

According to the results of conventional wind tunnel tests on rectangular cross sections with side ratios of B/D = 2–8 (B: along-wind length (m), D: cross-wind length (m)), motion-induced vortex excitation was confirmed. The generation of motion-induced vortex excitation is considered to be caused by the unification of separated vortices from the leading edge and secondary vortices at the trailing edge [1]. Spring-supported test for B/D = 1.18 was conducted in a closed circuit wind tunnel (cross section: 1.8 m high×0.9 m wide) at Kyushu Institute of Technology. Vibrations were confirmed in the neighborhoods of reduced wind speeds Vr = V/fD = 2 and Vr = 8 (V: wind speed (m/s), f: natural frequency (Hz)). Because the reduced wind speed in motion-induced vortex excitation is calculated as Vr = 1.67×B/D = 1.67×1.18 = 2.0 [1], vibrations around Vr = 2 were considered to be motion-induced vortex excitation. According to the smoke flow visualization result for B/D = 1.18 which was carried out by the authors, no secondary vortices at the trailing edge were formed, although separated vortices from the leading edge were formed at the time of oscillation at the onset wind speed of motion-induced vortex excitation, where aerodynamic vibrations considered to be motion-induced vortex excitation were confirmed. It was suggested that motion-induced vortex excitation might possibly occur in the range of low wind speeds, even in the case of side ratios where secondary vortices at trailing edge were not confirmed. In this study, smoke flow visualizations were performed for ratios of B/D = 0.5–2.0 in order to find out the relation between side ratios of rectangular cross sections and secondary vortices at trailing edge in motion-induced vortex excitation. The smoke flow visualizations around the model during oscillating condition were conducted in a small-sized wind tunnel at Kyushu Institute of Technology. Experimental Reynolds number was Re = VD/v = 1.6×103. For the forced-oscillating amplitude η, the non-dimensional double amplitudes were set as 2η/D = 0.02–0.15. Spring-supported tests were also carried out in order to obtain the response characteristics of the models.


2014 ◽  
Vol 564 ◽  
pp. 216-221
Author(s):  
Nasir S. Hassen ◽  
Nor Azwadi Che Sidik ◽  
Jamaluddin Md Sheriff

Spray losses are the most important problem that is faced in the spray application process as result of spray drift to non target areas by the action of air flow.This paper investigated the spray drift for banding applicationusing even flat-fan nozzle TPEunder wind tunnel conditions.In addition, this paper also examined the effect of different spray fan angles 65°, 80° and 95° on spray drift particularly where there is need to make the nozzle operate at the optimum heights above the ground or plant level.In addition, three cross wind speeds 1, 2 and 3m/swere produced to determine the effect of wind speed on total spray drift.According to the results from this study, the nozzle anglehas a significant effect on the total spray drift. The nozzle angle 65° gave the highest drift reduction compared to the other nozzle angles. The maximum driftfor all nozzles was found at nozzle height of 60 cm. The minimum mean value of the drift was found at wind speed of 1 m/s. This study supports the use of nozzle angles of less than 95° on heights more than 0.5m and on wind speeds more than 1m/s as a means for minimizing spray drift.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 299
Author(s):  
Jie Fang ◽  
Weiqiu Huang ◽  
Fengyu Huang ◽  
Lipei Fu ◽  
Gao Zhang

Based on computational fluid dynamics (CFD) and Realizable k-ε turbulence model, we established a numerical simulation method for wind and vapor-concentration fields of various external floating-roof tanks (EFRTs) (single, two, and four) and verified its feasibility using wind-tunnel experiments. Subsequently, we analysed superposition effects of wind speed and concentration fields for different types of EFRTs. The results show that high concentrations of vapor are found near the rim gap of the floating deck and above the floating deck surface. At different ambient wind speeds, interference between tanks is different. When the ambient wind speed is greater than 2 m/s, vapor concentration in leeward area of the rear tank is greater than that between two tanks, which makes it easy to reach explosion limit. It is suggested that more monitoring should be conducted near the bottom area of the rear tank and upper area on the left of the floating deck. Superposition in a downwind direction from the EFRTs becomes more obvious with an increase in the number of EFRTs; vapor superposition occurs behind two leeward tanks after leakage from four large EFRTs. Considering safety, environmental protection, and personnel health, appropriate measures should be taken at these positions for timely monitoring, and control.


2016 ◽  
Vol 20 (10) ◽  
pp. 1599-1611 ◽  
Author(s):  
Peng Hu ◽  
Yongle Li ◽  
Yan Han ◽  
CS Cai ◽  
Guoji Xu

Characteristics of wind fields over the gorge or valley terrains are becoming more and more important to the structural wind engineering. However, the studies on this topic are very limited. To obtain the fundamental characteristics information about the wind fields over a typical gorge terrain, a V-shaped simplified gorge, which was abstracted from some real deep-cutting gorges where long-span bridges usually straddle, was introduced in the present wind tunnel studies. Then, the wind characteristics including the mean wind speed, turbulence intensity, integral length scale, and the wind power spectrum over the simplified gorge were studied in a simulated atmospheric boundary layer. Furthermore, the effects of the oncoming wind field type and oncoming wind direction on these wind characteristics were also investigated. The results show that compared with the oncoming wind, the wind speeds at the gorge center become larger, but the turbulence intensities and the longitudinal integral length scales become smaller. Generally, the wind fields over the gorge terrain can be approximately divided into two layers, that is, the gorge inner layer and the gorge outer layer. The different oncoming wind field types have remarkable effects on the mean wind speed ratios near the ground. When the angle between the oncoming wind and the axis of the gorge is in a certain small range, such as smaller than 10°, the wind fields are very close to those associated with the wind direction of 0°. However, when the angle is in a larger range, such as larger than 20°, the wind fields in the gorge will significantly change. The research conclusions can provide some references for civil engineering practices regarding the characteristics of wind fields over the real gorge terrains.


2021 ◽  
Vol 6 (5) ◽  
pp. 1311-1324
Author(s):  
Thanasis Barlas ◽  
Georg Raimund Pirrung ◽  
Néstor Ramos-García ◽  
Sergio González Horcas ◽  
Robert Flemming Mikkelsen ◽  
...  

Abstract. One promising design solution for increasing the efficiency of modern horizontal axis wind turbines is the installation of curved tip extensions. However, introducing such complex geometries may move traditional aerodynamic models based on blade element momentum (BEM) theory out of their range of applicability. This motivated the present work, where a swept tip shape is investigated by means of both experimental and numerical tests. The latter group accounted for a wide variety of aerodynamic models, allowing us to highlight the capabilities and limitations of each of them in a relative manner. The considered swept tip shape is the result of a design optimization, focusing on locally maximizing power performance within load constraints. For the experimental tests, the tip model is instrumented with spanwise bands of pressure sensors and is tested in the Poul la Cour wind tunnel at the Technical University of Denmark (DTU). The methods used for the numerical tests consisted of a blade element model, a near-wake model, lifting-line free-wake models, and a fully resolved Navier–Stokes solver. The comparison of the numerical and the experimental test results is performed for a given range of angles of attack and wind speeds, which is representative of the expected conditions in operation. Results show that the blade element model cannot predict the measured normal force coefficients, but the other methods are generally in good agreement with the measurements in attached flow. Flow visualization and pressure distribution compare well with computational fluid dynamics (CFD) simulations. The agreement in the clean case is better than in the tripped case at the inboard sections. Some uncertainties regarding the effect of the boundary layer at the inboard tunnel wall and the post-stall behavior remain.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaqi Liu ◽  
Reiji Kimura ◽  
Jing Wu

Gravels can protect soil from wind erosion, however, there is little known about the effects of fine-grained gravel on aerodynamic characteristics of the near-surface airflow. Drag coefficient, wind-speed gradient, and turbulent transfer coefficient over different coverages of gravel surfaces were investigated in a compact boundary-layer wind tunnel. The drag coefficient of the fine-grained gravel surface reached the maximum value at 15% coverage and then tended to stabilize at gravel coverage 20% and greater. At a height of 4 cm, near-surface airflow on gravel surfaces can be divided clearly into upper and lower sublayers, defined as the inertial and roughness sublayers, respectively. The coefficient of variation of wind speed over gravel surfaces in the roughness sublayer was 8.6 times that in the inertial sublayer, indicating a greater effect of gravel coverage on wind-speed fluctuations in the lower layer. At a height of 4 cm, wind-speed fluctuations under the observed wind speeds were independent of changes in gravel coverage. In addition, an energy-exchange region, where sand particles can absorb more energy from the surrounding airflow, was found between the roughness and inertial sublayers, enhancing the erosional state of wind-blown sand. This finding can be applied to evaluate the aerodynamic stability of the gravel surface in the Gobi Desert and provide a theoretical basis for elucidation of the vertical distributions of wind-blown sand flux.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244213
Author(s):  
Xia Pan ◽  
Zhenyi Wang ◽  
Yong Gao ◽  
Zhengcai Zhang ◽  
Zhongjv Meng ◽  
...  

Wind erosion has gained increasing attention as one of the most serious global ecological and environmental threats. Windbreaks are effective at decreasing wind erosion by reducing wind speed to protect crops, livestock, and farmsteads, while providing wildlife habitats. Synthetic shrubs can act as novel windbreaks; however, there is limited knowledge on how their design affects wind speed. This study determined the protective effects (airflow field and sheltering efficiency) based on the design of synthetic shrubs in a wind tunnel. Broom-shaped synthetic shrubs weakened the wind speeds mainly at the middle and upper parts of the shrubs (5–14 cm), while for hemisphere-shaped shrubs this effect was greatest near their bases (below 4 cm) and least in the middle and upper parts (7–14 cm). Spindle-shaped synthetic shrubs provided the best reduction effect in wind range and strength. Moreover, the wind speed reduction ratio decreased with improved wind speeds and ranged from 26.25 cm (between the second and third rows) to 52.5 cm (after the third row). These results provide strong evidence that synthetic shrubs should be considered to decrease wind speed and prevent wind erosion.


2019 ◽  
Vol 24 (2) ◽  
pp. 75-87
Author(s):  
Ali Anton Senoaji ◽  
Arif Kusumawanto ◽  
Sentagi Sesotya Utami

This study was aimed at analyzing the effect of opening type on the thermal convenience of classrooms in old and new buildings at SMK Negeri 3 Yogyakarta. This study used a qualitative comparative method and the simulation of IES VE 2018. The field air measurement is carried out at 10 measurement points and 5 measurement points in each class, with a height of 1.5 m. Field measurements were carried out in March 2019, at 06.30-16.30 WIB. The parameters used in the study were air temperature, humidity and wind speed. Air temperature and humidity were measured using a Thermo hygrometer. Wind speed was measured using an anemometer. The data collection method is carried out by observation and measurement. Root Mean Squared Error (RMSE) was used to validate the data. The results show the best thermal convenience of the classroom was obtained during the simulation using the type of Windows Awning, with a full aperture area. Simulation results show a comfortable distribution of airflow in the classroom at wind speeds above 0.15-0.28 m/sec, Temperature 25.07-27.10oC.PENGARUH TIPE BUKAAN TERHADAP KENYAMANAN TERMAL RUANG KELAS BANGUNAN LAMA DAN BARU Tujuan dari penelitian yaitu menganalisis pengaruh bukaan terhadap kenyamanan termal ruang kelas pada bangunan lama dan baru, di SMK Negeri 3 Yogyakarta. Penelitian ini menggunakan metode komparatif kualitatif yaitu dan hasil simulasi IES VE 2018. Pengukuran udara luar dilakukan pada 10 titik pengukuran dan sebanyak 5 titik pengukuran disetiap kelasnya, dengan ketinggian 1,5 m. Pengukuran lapangan dilakukan pada bulan Maret tahun 2019, waktu 06.30-16.30 WIB. Parameter yang digunakan dalam penelitian yaitu temperatur udara, kelembaban dan kecepatan angin. Temperatur udara dan kelembaban diukur dengan menggunakan alat thermo hygrometer. Kecepatan angin diukur dengan menggunakan alat anemometer. Metode pengumpulan data dilakukan dengan metode pengamatan dan pengukuran. Validasi data menggunakan Root Mean Squared Error (RMSE). Hasil penelitian menunjukkan kenyamanan termal ruang kelas terbaik diperoleh pada saat simulasi menggunakan tipe bukaan ke atas atau Awning Windows, dengan area bukaan penuh. Hasil simulasi menunjukkan distribusi aliran udara yang nyaman di dalam ruang kelas pada kecepatan angin di atas 0,15-0,28 m/det, Temperatur 25,07 -27,10o C. 


2005 ◽  
Author(s):  
Balaji Kaushik ◽  
Richard D. Hale ◽  
Ray Taghavi

Aerodynamic trade studies in support of an interdisciplinary research program for large ground based telescopes are addressed. Numerous CFD (Computational Fluid Dynamics) trade studies were carried out to help identify the initial critical configuration of the telescope. The highest pressures induced on the reflective surface of the telescope mirror in the critical configuration were used in structural analysis. A module that correlated disparate discretizations in structural and fluid analyses through common parent geometry was developed. This module mapped surface pressures from the CFD discretization to the structural discretization using a weighted average technique. Experimental validation of the CFD results was carried out in the University of Kansas subsonic wind tunnel. The results from the CFD analysis and the wind tunnel experiments were in close agreement, with the maximum variation of pressures being 1%–8%. The preliminary telescope configuration that induced the highest pressure on the reflective surface of the primary mirror was identified as one inclined at 60° from the vertical plane and facing the wind directly. An “open-air” CFD model was developed that simulated the observatory shut-off operating conditions of 15 m/s wind speed and a fail-safe operating condition of 50 m/s wind speed. Critical local total gage pressures were 165 Pa and 1400 Pa at 15 and 50 m/s wind speeds respectively.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
Azli Abd Razak ◽  
Mohd Azhari Mohd Rodzi ◽  
Amirul Hakim Jumali ◽  
Sheikh Ahmad Zaki

Urban ventilation is important for the purpose of pollution dispersion, indoor ventilation for free running buildings and urban thermal comfort. In comparison to suburban cities, high-density cities have very low wind speeds at pedestrian level due to the densely built buildings blocking the wind and creating stagnant zones locally. Under this circumstance, field measurements were performed to investigate the performance of pedestrian wind at four major cities in Klang Valley. Mean wind speed was measured using anemometers at 1 minute data interval for 3 hours  and the  data collection for each case were obtained at pedestrian level. The mean wind speed ratio was plotted against the frontal area ratio and plan area ratio. The result indicates that: (1) the mean wind speed dramatically decreases with the increase of plan area ratio and (2) the mean wind speed exponentially decreases with the increase of frontal area ratio and qualitatively agrees with the power law relationship which is proposed by previous researcher. In addition, the frontal area ratio is considered as a better parameter to evaluate the performance of urban ventilation. 


Sign in / Sign up

Export Citation Format

Share Document