scholarly journals Mapless Navigation Based on 2D LIDAR in Complex Unknown Environments

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5802
Author(s):  
Kai Yan ◽  
Baoli Ma

This paper presents a novel approach for navigation in complex and unknown environments. At present, existing local path planners whose control output is the mapping of current sensor data have been widely studied. However, these methods cannot really solve the problem of being trapped by obstacles. We analyzed the reasons and made improvements, and finally our approach can avoid being trapped in complex environments. The proposed method is based on 2D LIDAR. A central part of the approach is finding out gaps in the environment by analyzing sensor data. Then, we choose one of the gaps we find as the sub-goal. Linear and angular velocities are provided by the approach considering nonholonomic mobile robots. The method does not rely on global planners and environment maps. Therefore, it has the advantages of low computational complexity and fast response, which is of great significance to robots with low computing power; it will also help to reduce the manufacturing cost of robots. In addition, simulations and real tests were performed using the Turtlebot2 robotic platform. Successful results are achieved in both simulations and experimental tests.

Author(s):  
Negin Yousefpour ◽  
Steve Downie ◽  
Steve Walker ◽  
Nathan Perkins ◽  
Hristo Dikanski

Bridge scour is a challenge throughout the U.S.A. and other countries. Despite the scale of the issue, there is still a substantial lack of robust methods for scour prediction to support reliable, risk-based management and decision making. Throughout the past decade, the use of real-time scour monitoring systems has gained increasing interest among state departments of transportation across the U.S.A. This paper introduces three distinct methodologies for scour prediction using advanced artificial intelligence (AI)/machine learning (ML) techniques based on real-time scour monitoring data. Scour monitoring data included the riverbed and river stage elevation time series at bridge piers gathered from various sources. Deep learning algorithms showed promising in prediction of bed elevation and water level variations as early as a week in advance. Ensemble neural networks proved successful in the predicting the maximum upcoming scour depth, using the observed sensor data at the onset of a scour episode, and based on bridge pier, flow and riverbed characteristics. In addition, two of the common empirical scour models were calibrated based on the observed sensor data using the Bayesian inference method, showing significant improvement in prediction accuracy. Overall, this paper introduces a novel approach for scour risk management by integrating emerging AI/ML algorithms with real-time monitoring systems for early scour forecast.


2021 ◽  
Vol 4 (1) ◽  
pp. 3
Author(s):  
Parag Narkhede ◽  
Rahee Walambe ◽  
Shruti Mandaokar ◽  
Pulkit Chandel ◽  
Ketan Kotecha ◽  
...  

With the rapid industrialization and technological advancements, innovative engineering technologies which are cost effective, faster and easier to implement are essential. One such area of concern is the rising number of accidents happening due to gas leaks at coal mines, chemical industries, home appliances etc. In this paper we propose a novel approach to detect and identify the gaseous emissions using the multimodal AI fusion techniques. Most of the gases and their fumes are colorless, odorless, and tasteless, thereby challenging our normal human senses. Sensing based on a single sensor may not be accurate, and sensor fusion is essential for robust and reliable detection in several real-world applications. We manually collected 6400 gas samples (1600 samples per class for four classes) using two specific sensors: the 7-semiconductor gas sensors array, and a thermal camera. The early fusion method of multimodal AI, is applied The network architecture consists of a feature extraction module for individual modality, which is then fused using a merged layer followed by a dense layer, which provides a single output for identifying the gas. We obtained the testing accuracy of 96% (for fused model) as opposed to individual model accuracies of 82% (based on Gas Sensor data using LSTM) and 93% (based on thermal images data using CNN model). Results demonstrate that the fusion of multiple sensors and modalities outperforms the outcome of a single sensor.


Author(s):  
László Takács ◽  
Ferenc Szabó

AbstractPolymer sandwich structures have high bending stiffness and strength and also low weight. Therefore, they are widely used in the transportation industry. In the conceptual design phase, it is essential to have a method to model the mechanical behavior of the sandwich and its adhesive joints accurately in full-vehicle scale to investigate different structure partitioning strategies. In this paper, a novel approach using finite element modeling is introduced. The sandwich panels are modeled with layered shells and the joint lines with general stiffness matrices. Stiffness parameters of the face-sheets and the core material are obtained via mechanical tests. Stiffness parameters of the joints are determined by using the method of Design of Experiments, where detailed sub-models of the joints serve as a reference. These models are validated with experimental tests of glass-fiber reinforced vinyl ester matrix composite sandwich structure with a foam core. By using two joint designs and three reference geometries, it is shown that the method is suitable to describe the deformation behavior in a full-vehicle scale with sufficient accuracy.


2004 ◽  
Vol 10 (6) ◽  
pp. 433-442 ◽  
Author(s):  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Leonardo Baldassarre

The rotating stall is a key problem for achieving a good working range of a centrifugal compressor and a detailed understanding of the phenomenon is very important to anticipate and avoid it. Many experimental tests have been planned by the authors to investigate the influence on stall behavior of different geometrical configurations. A stage with a backward channel upstream, a 2-D impeller with a vaneless diffuser and a constant cross-section volute downstream, constitute the basic configuration. Several diffuser types with different widths, pinch shapes, and diffusion ratios were tested. The stage was instrumented with many fast response dynamic pressure sensors so as to characterize inception and evolution of the rotating stall. This kind of analysis was carried out both in time and in frequency domains. The methodology used and the results on phenomenon evolution will be presented and discussed in this article.


Author(s):  
Urvish Trivedi ◽  
Jonielle McDonnough ◽  
Muhaimen Shamsi ◽  
Andrez Izurieta Ochoa ◽  
Alec Braynen ◽  
...  

Detecting humans and objects during walking has been a very difficult problem for people with visual impairment. To safely avoid collision with any object or human and to navigate from one location to another, it is significant to know how far and what kind of obstacle the user is facing. In recent years, many researches have shown that providing different vibration stimulation can be very useful to convey important information to the user. In this paper, we present our stereovision system with high definition camera to detect and identify humans and obstacles in real time and compare it with a modified version of existing wearable haptic belt that uses high-performance Ultrasonic sensors. The aim of this paper is to present the practicability of stereovision system over cane and assistive technology such as vibrotactile belt. The study is based on two assistive technologies. The first one consists of the vibrotactile belt connected to ultrasonic sensors and an accelerometer which returns user movement & speed information to the microcontroller. The microcontroller initiates expressive vibrotactile stimulation based on sensor data. Data gathered from this technology will be used as the baseline data for comparison with our stereovision system. Second, we present a novel approach to detect the type of obstacle using object recognition algorithm and the best approach to avoid it using the stereovision feedback. Data gathered from this technology with be comparted against the baseline data from the vibrotactile belt. In addition, we present the results of the comparative study which shows that stereovision system has plethora of advantages over vibrotactile belt.


2021 ◽  
Author(s):  
Eleonore Roguet ◽  
Emmanuel Persent ◽  
Daniel Averbuch

Abstract A new method which uses elastic and elasto-plastic Finite Element analyses is developed to design a double breech-block type connector. All relevant criteria proposed by API16F are fulfilled. In addition, plastic and bearing criteria have been added to support the use of lugs for load transfer in the connector. The proposed methodology has been applied and validated through experimental tests at different scales and in particular on laboratory specimens and small-scaled connectors. Based on these last structural tests, a safety factor of almost 8 was obtained for the design method on small-scaled connectors. Prototype tests at scale 1:1 allowed the methodology to be fully validated and a new product to be qualified. Certification bodies validated the whole design process, the employed methodology and the new connector.


Author(s):  
Alexander Astaras ◽  
Hadas Lewy ◽  
Christopher James ◽  
Artem Katasonov ◽  
Detlef Ruschin ◽  
...  

In this chapter the authors describe a novel approach to healthcare delivery for the elderly as adopted by USEFIL, a research project which uses unobtrusive, multi-parametric sensor data collection to support seniors. The system is based on everyday devices such as an in-mirror camera, smart TV, wrist-mountable personal communicator and a tablet computer strategically distributed around the house. It exploits sensor data fusion, intelligent decision support for carers, remote alerting, secure data communications and storage. A combined quantitative and qualitative knowledgebase was established and analysed, target groups were established among elderly prospective users and scenarios were built around each group. Use cases have been prioritised according to quantitative functional and non-functional criteria. Our research findings suggest that an unobtrusive system such as USEFIL could potentially make a significant difference in the quality of life of elderly people, improve the focus of provided healthcare and support their daily independent living activities.


2010 ◽  
Vol 2 (3) ◽  
pp. 28-42 ◽  
Author(s):  
H. R. Chennamma ◽  
Lalitha Rangarajan

A digitally developed image is a viewable image (TIFF/JPG) produced by a camera’s sensor data (raw image) using computer software tools. Such images might use different colour space, demosaicing algorithms or by different post processing parameter settings which are not the one coded in the source camera. In this regard, the most reliable method of source camera identification is linking the given image with the sensor of camera. In this paper, the authors propose a novel approach for camera identification based on sensor’s readout noise. Readout noise is an important intrinsic characteristic of a digital imaging sensor (CCD or CMOS) and it cannot be removed. This paper quantitatively measures readout noise of the sensor from an image using the mean-standard deviation plot, while in order to evaluate the performance of the proposed approach, the authors tested against the images captured at two different exposure levels. Results show datasets containing 1200 images acquired from six different cameras of three different brands. The success of proposed method is corroborated through experiments.


2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Saleh Altowaijri ◽  
Mohamed Ayari ◽  
Yamen El Touati

By nature, some jobs are always in closed environments and employees may stay for long periods. This is the case for many professional activities such as military watch tours of borders, civilian buildings and facilities that need efficient control processes. The role assigned to personnel in such environments is usually sensitive and of high importance, especially in terms of security and protection. With this in mind, we proposed in our research a novel approach using multi-sensor technology to monitor many safety and security parameters including the health status of indoor workers, such as those in watchtowers and at guard posts. In addition, the data gathered for those employees (heart rate, temperature, eye movement, human motion, etc.) combined with the room’s sensor data (temperature, oxygen ratio, toxic gases, air quality, etc.) were saved by appropriate cloud services, which ensured easy access to the data without ignoring the privacy protection aspect of such critical material. This information can be used later by specialists to monitor the evolution of the worker’s health status as well as its cost-effectiveness, which gives the possibility to improve productivity in the workplace and general employee health.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 196 ◽  
Author(s):  
S. P. Sundar Singh Sivam ◽  
K. Saravanan ◽  
N. Pradeep ◽  
S. Rajendra Kumar ◽  
Sathiyamoorthy Karuppiah

The dawn of globalization of business and competitiveness in manufacturing has forced firms to enhance their manufacturing facilities to reply to plug necessities. One of the crucial factors for this is often machine evaluation that involves a crucial decision using general and obscure information. The Primarily mass production aims high productivity so as to reduce cost and interchangeability to facilitate simple assembly which necessitates the production devices to increase the speed of manufacture. Across the business, the assembly challenges pivot around cutting lead times, increasing throughout and obtaining products to market as quickly as possible alongside some less challenging problems like shorter runs, higher product combine, tighter tolerances, a lot of complicated geometries in harder materials, and complete machining during a single handling. Advancements in technology have resulted in a creation of a lot of responsive tools referred to as MTM systems that are computer numerical Control (CNC) systems capable of acting a variety of operations with multiple tools and spindles in a single setup. The following project aims at reduction of manufacturing cost by modifying the process layout and operational parameters by novel approach for an identical element for 3 and 5- Axis Vertical Machining center. Nowadays, machining layout and operational sequence plays a significant role in automotive business to produce products at competitive price in market which consists of Machines, Tools, fixtures, computer interface, trained professionals and form of products. MAKINO PS60 is a Multi axis CNC machine (BRIDGE PORT), that helps to perform the machining operations on the roles at 5 totally different axes to create the required profiles whose implementation can pave means for a few terribly important benefits like, seven machines are replaced by Single machine, Man power are reduced from 9 to 3 per day, Tools usage reduced from 40 to 30 per day & production cost can reduce up to 60%.  


Sign in / Sign up

Export Citation Format

Share Document