scholarly journals Experimental Evaluation of Machine Learning Methods for Robust Received Signal Strength-Based Visible Light Positioning

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6109 ◽  
Author(s):  
Willem Raes ◽  
Nicolas Knudde ◽  
Jorik De Bruycker ◽  
Tom Dhaene ◽  
Nobby Stevens

In this work, the use of Machine Learning methods for robust Received Signal Strength (RSS)-based Visible Light Positioning (VLP) is experimentally evaluated. The performance of Multilayer Perceptron (MLP) models and Gaussian processes (GP) is investigated when using relative RSS input features. The experimental set-up for the RSS-based VLP technology uses light-emitting diodes (LEDs) transmitting intensity modulated light and a single photodiode (PD) as a receiver. The experiments focus on achieving robustness to cope with unknown received signal strength modifications over time. Therefore, several datasets were collected, where per dataset either the LEDs transmitting power is modified or the PD aperture is partly obfuscated by dust particles. Two relative RSS schemes are investigated. The first scheme uses the maximum received light intensity to normalize the received RSS vector, while the second approach obtains RSS ratios by combining all possible unique pairs of received intensities. The Machine Learning (ML) methods are compared to a relative multilateration implementation. It is demonstrated that the adopted MLP and GP models exhibit superior performance and higher robustness when compared to the multilateration strategies. Furthermore, when comparing the investigated ML models, the GP model is proven to be more robust than the MLP for the considered scenarios.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
G Sng ◽  
D Y Z Lim ◽  
C H Sia ◽  
J S W Lee ◽  
X Y Shen ◽  
...  

Abstract Background/Introduction Classic electrocardiographic (ECG) criteria for left ventricular hypertrophy (LVH) have been well studied in Western populations, particularly in hypertensive patients. However, their utility in Asian populations is not well studied, and their applicability to young pre-participation cohorts is unclear. We sought to evaluate the performance of classical criteria against that of machine learning models. Aims We sought to evaluate the performance of classical criteria against the performance of novel machine learning models in the identification of LVH. Methodology Between November 2009 and December 2014, pre-participation screening ECG and subsequent echocardiographic data was collected from 13,954 males aged 16 to 22, who reported for medical screening prior to military conscription. Final diagnosis of LVH was made on echocardiography, with LVH defined as a left ventricular mass index >115g/m2. The continuous and binary forms of classical criteria were compared against machine learning models using receiver-operating characteristics (ROC) curve analysis. An 80:20 split was used to divide the data into training and test sets for the machine learning models, and three fold cross validation was used in training the models. We also compared the important variables identified by machine learning models with the input variables of classical criteria. Results Prevalence of echocardiographic LVH in this population was 0.91% (127 cases). Classical ECG criteria had poor performance in predicting LVH, with the best predictions achieved by the continuous Sokolow-Lyon (AUC = 0.63, 95% CI = 0.58–0.68) and the continuous Modified Cornell (AUC = 0.63, 95% CI = 0.58–0.68). Machine learning methods achieved superior performance – Random Forest (AUC = 0.74, 95% CI = 0.66–0.82), Gradient Boosting Machines (AUC = 0.70, 95% CI = 0.61–0.79), GLMNet (AUC = 0.78, 95% CI = 0.70–0.86). Novel and less recognized ECG parameters identified by the machine learning models as being predictive of LVH included mean QT interval, mean QRS interval, R in V4, and R in I. ROC curves of models studies Conclusion The prevalence of LVH in our population is lower than that previously reported in other similar populations. Classical ECG criteria perform poorly in this context. Machine learning methods show superior predictive performance and demonstrate non-traditional predictors of LVH from ECG data. Further research is required to improve the predictive ability of machine learning models, and to understand the underlying pathology of the novel ECG predictors identified.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wenbo Liu ◽  
Ming Li ◽  
Xiaobing Zou ◽  
Bhiksha Raj

Autism Spectrum Disorder (ASD) is a group of lifelong neurodevelopmental disorders with complicated causes. A key symptom of ASD patients is their impaired interpersonal communication ability. Recent study shows that face scanning patterns of individuals with ASD are often different from those of typical developing (TD) ones. Such abnormality motivates us to study the feasibility of identifying ASD children based on their face scanning patterns with machine learning methods. In this paper, we consider using the bag-of-words (BoW) model to encode the face scanning patterns, and propose a novel dictionary learning method based on dual mode seeking for better BoW representation. Unlike k-means which is broadly used in conventional BoW models to learn dictionaries, the proposed method captures discriminative information by finding atoms which maximizes both the purity and coverage of belonging samples within one class. Compared to the rich literature of ASD studies from psychology and neural science, our work marks one of the relatively few attempts to directly identify high-functioning ASD children with machine learning methods. Experiments demonstrate the superior performance of our method with considerable gain over several baselines. Although the proposed work is yet too preliminary to directly replace existing autism diagnostic observation schedules in the clinical practice, it shed light on future applications of machine learning methods in early screening of ASD.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cindy Feng ◽  
George Kephart ◽  
Elizabeth Juarez-Colunga

Abstract Background Coronavirus disease (COVID-19) presents an unprecedented threat to global health worldwide. Accurately predicting the mortality risk among the infected individuals is crucial for prioritizing medical care and mitigating the healthcare system’s burden. The present study aimed to assess the predictive accuracy of machine learning methods to predict the COVID-19 mortality risk. Methods We compared the performance of classification tree, random forest (RF), extreme gradient boosting (XGBoost), logistic regression, generalized additive model (GAM) and linear discriminant analysis (LDA) to predict the mortality risk among 49,216 COVID-19 positive cases in Toronto, Canada, reported from March 1 to December 10, 2020. We used repeated split-sample validation and k-steps-ahead forecasting validation. Predictive models were estimated using training samples, and predictive accuracy of the methods for the testing samples was assessed using the area under the receiver operating characteristic curve, Brier’s score, calibration intercept and calibration slope. Results We found XGBoost is highly discriminative, with an AUC of 0.9669 and has superior performance over conventional tree-based methods, i.e., classification tree or RF methods for predicting COVID-19 mortality risk. Regression-based methods (logistic, GAM and LASSO) had comparable performance to the XGBoost with slightly lower AUCs and higher Brier’s scores. Conclusions XGBoost offers superior performance over conventional tree-based methods and minor improvement over regression-based methods for predicting COVID-19 mortality risk in the study population.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yue Wang ◽  
Yiming Jiang ◽  
Julong Lan

When traditional machine learning methods are applied to network intrusion detection, they need to rely on expert knowledge to extract feature vectors in advance, which incurs lack of flexibility and versatility. Recently, deep learning methods have shown superior performance compared with traditional machine learning methods. Deep learning methods can learn the raw data directly, but they are faced with expensive computing cost. To solve this problem, a preprocessing method based on multipacket input unit and compression is proposed, which takes m data packets as the input unit to maximize the retention of information and greatly compresses the raw traffic to shorten the data learning and training time. In our proposed method, the CNN network structure is optimized and the weights of some convolution layers are assigned directly by using the Gabor filter. Experimental results on the benchmark data set show that compared with the existing models, the proposed method improves the detection accuracy by 2.49% and reduces the training time by 62.1%. In addition, the experiments show that the proposed compression method has obvious advantages in detection accuracy and computational efficiency compared with the existing compression methods.


2019 ◽  
Author(s):  
Tanbin Rahman ◽  
Hsin-En Huang ◽  
An-Shun Tai ◽  
Wen-Ping Hsieh ◽  
George Tseng

AbstractSupervised machine learning methods have been increasingly used in biomedical research and in clinical practice. In transcriptomic applications, RNA-seq data have become dominating and have gradually replaced traditional microarray due to its reduced background noise and increased digital precision. Most existing machine learning methods are, however, designed for continuous intensities of microarray and are not suitable for RNA-seq count data. In this paper, we develop a negative binomial model via generalized linear model framework with double regularization for gene and covariate sparsity to accommodate three key elements: adequate modeling of count data with overdispersion, gene selection and adjustment for covariate effect. The proposed method is evaluated in simulations and two real applications using cervical tumor miRNA-seq data and schizophrenia post-mortem brain tissue RNA-seq data to demonstrate its superior performance in prediction accuracy and feature selection.


Sign in / Sign up

Export Citation Format

Share Document